charcoal是什么颜色| ntd是什么意思| 书中自有颜如玉什么意思| 十九畏是什么意思| 什么掌不能拍| 眼干眼涩眼疲劳用什么眼药水| camp是什么| 出家当和尚有什么要求| 老蜜蜡什么颜色最好| 吃什么能长胖| 不胜什么| 拘禁是什么意思| 鼻甲肥大是什么原因| 为什么会长息肉| 收尿干什么用的| yeezy是什么牌子| 指甲凹凸不平什么原因| 2月28号是什么星座| 手麻挂什么科室| 乌龟肠胃炎用什么药| 肉质瘤是什么东西| 尿蛋白高是什么意思| 绿茶婊什么意思| 更年期出汗吃什么药好| 肠胃蠕动慢吃什么药| 甲状腺结节什么原因引起的| 查尿常规挂什么科| 无语是什么意思| 土龙是什么| 打生长激素有什么副作用| 硬不起来吃什么好| 是什么部首| 什么不生四字成语| 拉痢疾吃什么药| 觉是什么偏旁| 泌尿科主要看什么病| 什么是孢子粉| 上曼月乐环后要注意什么| p5是什么意思| 什么是处女膜| 毛子是什么意思| 行为艺术是什么意思| 感冒吃什么菜比较好| 夏天适合种什么蔬菜| 什么叫原发性高血压| 狮子女喜欢什么样的男生| 高密度脂蛋白胆固醇偏低是什么原因| 时间是什么意思| 双子座和什么座最配对| 脚气脱皮用什么药最好| 胸透是什么| 法警是干什么的| 胃疼肚子疼是什么原因| 男人吃海参有什么好处| 地接是什么意思| 力争是什么意思| 十万个为什么作者是谁| 舌苔发白是什么症状| 陈皮治什么病| 双肺间质性改变是什么意思| 七叶一枝花主治什么病| 年柱亡神是什么意思| 男人鼻子大代表什么| 狗懒子是什么意思| 水牛是什么意思| 手心发热吃什么药| 姑婆的儿子叫什么| 牛顿发明了什么| 商是什么| 美国为什么有哥伦比亚| 姜文和姜武是什么关系| 望惠存是什么意思| 眼睛肿胀是什么原因| 移徙是什么意思| 筑基期后面是什么| 毫无意义是什么意思| mpn是什么意思| 小孩不说话什么原因| 两个方一个土是什么字| 攻坚是什么意思| 荨麻疹可以吃什么| 男人下面胀痛什么原因造成呢| 股市xd是什么意思| 益精是什么意思| 梦见吃饭是什么意思| 起夜是什么意思| 阿凡提是什么意思| 细菌性阴道炎是什么原因引起的| 孕妇头疼是什么原因| 残局是什么意思| 减肥可以吃什么水果| 2月2号什么星座| 青蛙怕什么| 防晒霜什么牌子好| 什么食物含铁| 口舌是非是什么意思| 下焦湿热阴囊潮湿吃什么药| 胎盘厚有什么影响| 哺乳期头痛可以吃什么药| 撕脱性骨折什么意思| 蟑螂吃什么东西| titus手表属于什么档次| 跖疣是什么样子图片| 泡黄芪水喝有什么好处| 古惑仔是什么| 夜长梦多是什么意思| 为什么微信运动总是显示步数为0| 一龙一什么| 樱花是什么样子的| 手足口病喝什么汤| 尿崩症是什么症状| 胃炎吃什么消炎药| 脚面麻木是什么原因| 双职工是什么意思| burberry是什么档次| 滥竽充数的充是什么意思| 女性尿检能查出什么病| 头疼流鼻血是什么原因| 阳虚是什么症状| 山昆读什么| 存是什么生肖| 01什么意思| 滴滴是什么意思| 什么人不能吃秋葵| 推车是什么意思| 腔梗是什么意思| 指鼻试验阳性代表什么| 乳房上长黑色的斑点是什么原因| 摩羯座女生和什么星座男生最配| 黑道日为什么还是吉日| 什么既什么又什么| 一天当中什么时候血压最高| sany是什么牌子| 34周为什么不建议保胎| 喝酒前喝什么不容易醉又不伤胃| 四维空间是什么| 大浪淘沙下一句是什么| 每天都做梦是什么原因| 喜丧是什么意思| 长期喝蜂蜜有什么好处| 排酸是什么意思| 大千是什么意思| 弟弟的孩子叫姐姐什么| 溃疡是什么原因引起的| 脱脂棉是什么| 79年属什么的| 脚后跟干裂起硬皮用什么药| denim是什么意思| 什么叫脂肪瘤| 奈何桥是什么意思| 人类的祖先是什么动物| 反复是什么意思| 翻墙软件是什么| 朝鲜人一日三餐吃什么| 小孩咳嗽不能吃什么食物| 咽炎吃什么药好| 四气指的是什么| amv是什么意思| 两癌筛查主要查什么| 告示是什么意思| 什么水果泡酒最好| 不什么不| 探花是什么意思| 低密度脂蛋白高有什么症状| 扁平足为什么不能当兵| 祉是什么意思| 七月份有什么水果| 活菩萨是什么意思| 玻璃体混浊用什么药| 一什么公园| 阳痿是什么原因造成的| ch4是什么气体| 蜂蜜芥末酱是什么味道| 什么钱最不值钱| 恍惚什么意思| 梦见剪头发预示什么| 胆汁酸高是什么原因| 马和驴为什么能杂交| 科员是什么职务| 吃什么水果对心脏好| 繁字五行属什么| 小龙虾不能和什么一起吃| 傲慢表情是什么意思| 人参是什么味道| 糙米是什么米| 荔枝是什么季节的水果| 米肉是什么| 迁坟需要准备什么东西| 三羊念什么字| 熟地黄有什么功效| 智齿什么时候拔最好| 晚餐吃什么菜谱大全| 安乐死什么意思| 肝内胆管轻度扩张是什么意思| 黄皮是什么水果| 男性睾丸一边大一边小是什么原因| 行是什么意思| 水落石出开过什么生肖| cd4是什么意思| 黄体期什么意思| 他汀是什么药| 老花镜是什么镜| 胶原蛋白是什么| 眼睛肿疼是什么原因引起的| 虎都男装属于什么档次| 无后为大的前一句是什么| 胆木是什么| 牛和什么生肖最配| 去韩国需要办理什么手续| 老是吐是什么原因| 增肌吃什么| 耳膜炎是什么原因引起的| kksk是什么意思| 宋朝前面是什么朝代| 骨折吃什么钙片| 磨牙是什么原因| 疱疹用什么药| 三庚是什么意思| 鸟屎掉脸上有什么预兆| 昀字五行属什么| 波霸是什么| 上午十点多是什么时辰| 夏天喝什么茶好| 孕妇做春梦是什么意思| 做好自己是什么意思| 还是什么结构的字| 紫水晶五行属什么| 前列腺是什么意思| 沙僧为什么被贬下凡间| 血糖高吃什么食物最好最佳| 为什么多喝水反而胖了| 白天梦见蛇是什么预兆| 红花和藏红花有什么区别| 什么食物降火| 上呼吸道感染吃什么| 胃不舒服想吐吃什么药| 补充免疫力吃什么好| 容字五行属什么| 畈是什么意思| 妤读什么| 2025什么年| 什么鸟好养又与人亲近| 1978属什么| 石膏的主要成分是什么| 无机磷偏低有什么影响| 1015是什么星座| 玉米排骨汤放什么调料| 眼角痛什么原因| 红细胞压积偏高是什么意思| 肝纤维化是什么意思| 什么是平舌音| 肚脐有分泌物还发臭是什么原因| 六十而耳顺是什么意思| 什么是遴选| 9月13日什么星座| 翌日是什么意思| 1月29日是什么星座| 老学究什么意思| 水柔棉是什么面料| 锡兵是什么意思| 孕妇血压低吃什么能补上来| 股骨径是指胎儿什么| 皇帝自称什么| 脑子瓦特了什么意思| 百度

揭秘:张召忠公开称“朝鲜是中国最大的威胁”

百度 日方表示,台湾渔船3日至4日连续在日本“专属经济海域”内“违法作业”,并无视日方停船指示而驶离,日方“执法有据”,因此无法接受台湾“作为过当”的质疑。

Cosmology (from Ancient Greek κ?σμο? (cosmos) 'the universe, the world' and λογ?α (logia) 'study of') is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term cosmology was first used in English in 1656 in Thomas Blount's Glossographia, with the meaning of "a speaking of the world".[2] In 1731, German philosopher Christian Wolff used the term cosmology in Latin (cosmologia) to denote a branch of metaphysics that deals with the general nature of the physical world.[3] Religious or mythological cosmology is a body of beliefs based on mythological, religious, and esoteric literature and traditions of creation myths and eschatology. In the science of astronomy, cosmology is concerned with the study of the chronology of the universe.

The Hubble eXtreme Deep Field (XDF) was completed in September 2012 and shows the farthest galaxies ever photographed at that time. Except for the few stars in the foreground (which are bright and easily recognizable because only they have diffraction spikes), every speck of light in the composite photo is an individual galaxy, some of them as old as 13.2 billion years; the observable universe is estimated to contain more than 2 trillion galaxies.[1]

Physical cosmology is the study of the observable universe's origin, its large-scale structures and dynamics, and the ultimate fate of the universe, including the laws of science that govern these areas.[4] It is investigated by scientists, including astronomers and physicists, as well as philosophers, such as metaphysicians, philosophers of physics, and philosophers of space and time. Because of this shared scope with philosophy, theories in physical cosmology may include both scientific and non-scientific propositions and may depend upon assumptions that cannot be tested. Physical cosmology is a sub-branch of astronomy that is concerned with the universe as a whole. Modern physical cosmology is dominated by the Big Bang Theory which attempts to bring together observational astronomy and particle physics;[5][6] more specifically, a standard parameterization of the Big Bang with dark matter and dark energy, known as the Lambda-CDM model.

Theoretical astrophysicist David N. Spergel has described cosmology as a "historical science" because "when we look out in space, we look back in time" due to the finite nature of the speed of light.[7]

Disciplines

edit

Physics and astrophysics have played central roles in shaping our understanding of the universe through scientific observation and experiment. Physical cosmology was shaped through both mathematics and observation in an analysis of the whole universe. The universe is generally understood to have begun with the Big Bang, followed almost instantaneously by cosmic inflation, an expansion of space from which the universe is thought to have emerged 13.799 ± 0.021 billion years ago.[8] Cosmogony studies the origin of the universe, and cosmography maps the features of the universe.

In Diderot's Encyclopédie, cosmology is broken down into uranology (the science of the heavens), aerology (the science of the air), geology (the science of the continents), and hydrology (the science of waters).[9]

Metaphysical cosmology has also been described as the placing of humans in the universe in relationship to all other entities. This is exemplified by Marcus Aurelius's observation that a man's place in that relationship: "He who does not know what the world is does not know where he is, and he who does not know for what purpose the world exists, does not know who he is, nor what the world is."[10]

Discoveries

edit

Physical cosmology

edit

Physical cosmology is the branch of physics and astrophysics that deals with the study of the physical origins and evolution of the universe. It also includes the study of the nature of the universe on a large scale. In its earliest form, it was what is now known as "celestial mechanics," the study of the heavens. Greek philosophers Aristarchus of Samos, Aristotle, and Ptolemy proposed different cosmological theories. The geocentric Ptolemaic system was the prevailing theory until the 16th century when Nicolaus Copernicus, and subsequently Johannes Kepler and Galileo Galilei, proposed a heliocentric system. This is one of the most famous examples of epistemological rupture in physical cosmology.

Isaac Newton's Principia Mathematica, published in 1687, was the first description of the law of universal gravitation. It provided a physical mechanism for Kepler's laws and also allowed the anomalies in previous systems, caused by gravitational interaction between the planets, to be resolved. A fundamental difference between Newton's cosmology and those preceding it was the Copernican principle—that the bodies on Earth obey the same physical laws as all celestial bodies. This was a crucial philosophical advance in physical cosmology.

Modern scientific cosmology is widely considered to have begun in 1917 with Albert Einstein's publication of his final modification of general relativity in the paper "Cosmological Considerations of the General Theory of Relativity"[11] (although this paper was not widely available outside of Germany until the end of World War I). General relativity prompted cosmogonists such as Willem de Sitter, Karl Schwarzschild, and Arthur Eddington to explore its astronomical ramifications, which enhanced the ability of astronomers to study very distant objects. Physicists began changing the assumption that the universe was static and unchanging. In 1922, Alexander Friedmann introduced the idea of an expanding universe that contained moving matter.

In parallel to this dynamic approach to cosmology, one long-standing debate about the structure of the cosmos was coming to a climax – the Great Debate (1917 to 1922) – with early cosmologists such as Heber Curtis and Ernst ?pik determining that some nebulae seen in telescopes were separate galaxies far distant from our own.[12] While Heber Curtis argued for the idea that spiral nebulae were star systems in their own right as island universes, Mount Wilson astronomer Harlow Shapley championed the model of a cosmos made up of the Milky Way star system only. This difference of ideas came to a climax with the organization of the Great Debate on 26 April 1920 at the meeting of the U.S. National Academy of Sciences in Washington, D.C. The debate was resolved when Edwin Hubble detected Cepheid Variables in the Andromeda Galaxy in 1923 and 1924.[13][14] Their distance established spiral nebulae well beyond the edge of the Milky Way.

Subsequent modelling of the universe explored the possibility that the cosmological constant, introduced by Einstein in his 1917 paper, may result in an expanding universe, depending on its value. Thus the Big Bang model was proposed by the Belgian priest Georges Lema?tre in 1927[15] which was subsequently corroborated by Edwin Hubble's discovery of the redshift in 1929[16] and later by the discovery of the cosmic microwave background radiation by Arno Penzias and Robert Woodrow Wilson in 1964.[17] These findings were a first step to rule out some of many alternative cosmologies.

Since around 1990, several dramatic advances in observational cosmology have transformed cosmology from a largely speculative science into a predictive science with precise agreement between theory and observation. These advances include observations of the microwave background from the COBE,[18] WMAP[19] and Planck satellites,[20] large new galaxy redshift surveys including 2dfGRS[21] and SDSS,[22] and observations of distant supernovae and gravitational lensing. These observations matched the predictions of the cosmic inflation theory, a modified Big Bang theory, and the specific version known as the Lambda-CDM model. This has led many to refer to modern times as the "golden age of cosmology".[23]

In 2014, the BICEP2 collaboration claimed that they had detected the imprint of gravitational waves in the cosmic microwave background. However, this result was later found to be spurious: the supposed evidence of gravitational waves was in fact due to interstellar dust.[24][25]

On 1 December 2014, at the Planck 2014 meeting in Ferrara, Italy, astronomers reported that the universe is 13.8 billion years old and composed of 4.9% atomic matter, 26.6% dark matter and 68.5% dark energy.[26]

Religious or mythological cosmology

edit

Religious or mythological cosmology is a body of beliefs based on mythological, religious, and esoteric literature and traditions of creation and eschatology. Creation myths are found in most religions, and are typically split into five different classifications, based on a system created by Mircea Eliade and his colleague Charles Long.

  • Types of Creation Myths based on similar motifs:
    • Creation ex nihilo in which the creation is through the thought, word, dream or bodily secretions of a divine being.
    • Earth diver creation in which a diver, usually a bird or amphibian sent by a creator, plunges to the seabed through a primordial ocean to bring up sand or mud which develops into a terrestrial world.
    • Emergence myths in which progenitors pass through a series of worlds and metamorphoses until reaching the present world.
    • Creation by the dismemberment of a primordial being.
    • Creation by the splitting or ordering of a primordial unity such as the cracking of a cosmic egg or a bringing order from chaos.[27]

Philosophy

edit
 
Representation of the observable universe on a logarithmic scale. Distance from the Sun increases from center to edge. Planets and other celestial bodies were enlarged to appreciate their shapes.

Cosmology deals with the world as the totality of space, time and all phenomena. Historically, it has had quite a broad scope, and in many cases was found in religion.[28] Some questions about the Universe are beyond the scope of scientific inquiry but may still be interrogated through appeals to other philosophical approaches like dialectics. Some questions that are included in extra-scientific endeavors may include:[29][30]

  • What is the origin of the universe? What is its first cause (if any)? Is its existence necessary? (see monism, pantheism, emanationism and creationism)
  • What are the ultimate material components of the universe? (see mechanism, dynamism, hylomorphism, atomism)
  • What is the ultimate reason (if any) for the existence of the universe? Does the cosmos have a purpose? (see teleology)
  • Does the existence of consciousness have a role in the existence of reality? How do we know what we know about the totality of the cosmos? Does cosmological reasoning reveal metaphysical truths? (see epistemology)

Charles Kahn, a historian of philosophy, attributed the origins of ancient Greek cosmology to Anaximander.[31]

Historical cosmologies

edit
Name Author and date Classification Remarks
Hindu cosmology Rigveda (c.?1700–1100 BCE) Cyclical or oscillating, Infinite in time Primal matter remains manifest for 311.04 trillion years and unmanifest for an equal length of time. The universe remains manifest for 4.32 billion years and unmanifest for an equal length of time. Innumerable universes exist simultaneously. These cycles have and will last forever, driven by desires.
Zoroastrian Cosmology Avesta (c.?1500–600 BCE) Dualistic Cosmology According to Zoroastrian Cosmology, the universe is the manifestation of perpetual conflict between Existence and non-existence, Good and evil and light and darkness. the universe will remain in this state for 12000 years; at the time of resurrection, the two elements will be separated again.
Jain cosmology Jain Agamas (written around 500 CE as per the teachings of Mahavira 599–527 BCE) Cyclical or oscillating, eternal and finite Jain cosmology considers the loka, or universe, as an uncreated entity, existing since infinity, the shape of the universe as similar to a man standing with legs apart and arm resting on his waist. This Universe, according to Jainism, is broad at the top, narrow at the middle and once again becomes broad at the bottom.
Babylonian cosmology Babylonian literature (c.?2300–500 BCE) Flat Earth floating in infinite "waters of chaos" The Earth and the Heavens form a unit within infinite "waters of chaos"; the Earth is flat and circular, and a solid dome (the "firmament") keeps out the outer "chaos"-ocean.
Eleatic cosmology Parmenides (c.?515 BCE) Finite and spherical in extent The Universe is unchanging, uniform, perfect, necessary, timeless, and neither generated nor perishable. Void is impossible. Plurality and change are products of epistemic ignorance derived from sense experience. Temporal and spatial limits are arbitrary and relative to the Parmenidean whole.
Samkhya Cosmic Evolution Kapila (6th century BCE), pupil Asuri Prakriti (Matter) and Purusha (Consiouness) Relation Prakriti (Matter) is the source of the world of becoming. It is pure potentiality that evolves itself successively into twenty four tattvas or principles. The evolution itself is possible because Prakriti is always in a state of tension among its constituent strands known as gunas (Sattva (lightness or purity), Rajas (passion or activity), and Tamas (inertia or heaviness)). The cause and effect theory of Sankhya is called Satkaarya-vaada (theory of existent causes), and holds that nothing can really be created from or destroyed into nothingness—all evolution is simply the transformation of primal Nature from one form to another.[citation needed]
Biblical cosmology Genesis creation narrative Earth floating in infinite "waters of chaos" The Earth and the Heavens form a unit within infinite "waters of chaos"; the "firmament" keeps out the outer "chaos"-ocean.
Anaximander's model Anaximander (c.?560 BCE) Geocentric, cylindrical Earth, infinite in extent, finite time; first purely mechanical model The Earth floats very still in the centre of the infinite, not supported by anything.[32] At the origin, after the separation of hot and cold, a ball of flame appeared that surrounded Earth like bark on a tree. This ball broke apart to form the rest of the Universe. It resembled a system of hollow concentric wheels, filled with fire, with the rims pierced by holes like those of a flute; no heavenly bodies as such, only light through the holes. Three wheels, in order outwards from Earth: stars (including planets), moon, and a large Sun.[33]
Atomist universe Anaxagoras (500–428 BCE) and later Epicurus Infinite in extent The universe contains only two things: an infinite number of tiny seeds (atoms) and the void of infinite extent. All atoms are made of the same substance, but differ in size and shape. Objects are formed from atom aggregations and decay back into atoms. Incorporates Leucippus' principle of causality: "nothing happens at random; everything happens out of reason and necessity". The universe was not ruled by gods.[citation needed]
Pythagorean universe Philolaus (d. 390 BCE) Existence of a "Central Fire" at the center of the Universe. At the center of the Universe is a central fire, around which the Earth, Sun, Moon and planets revolve uniformly. The Sun revolves around the central fire once a year, the stars are immobile. The Earth in its motion maintains the same hidden face towards the central fire, hence it is never seen. First known non-geocentric model of the Universe.[34]
De Mundo Pseudo-Aristotle (d. 250 BCE or between 350 and 200 BCE) The Universe is a system made up of heaven and Earth and the elements which are contained in them. There are "five elements, situated in spheres in five regions, the less being in each case surrounded by the greater – namely, earth surrounded by water, water by air, air by fire, and fire by ether – make up the whole Universe."[35]
Stoic universe Stoics (300 BCE – 200 CE) Island universe The cosmos is finite and surrounded by an infinite void. It is in a state of flux, and pulsates in size and undergoes periodic upheavals and conflagrations.
Platonic universe Plato (c.?360 BCE) Geocentric, complex cosmogony, finite extent, implied finite time, cyclical Static Earth at center, surrounded by heavenly bodies which move in perfect circles, arranged by the will of the Demiurge[36] in order: Moon, Sun, planets and fixed stars.[37][38] Complex motions repeat every 'perfect' year.[39]
Eudoxus' model Eudoxus of Cnidus (c.?340 BCE) and later Callippus Geocentric, first geometric-mathematical model The heavenly bodies move as if attached to a number of Earth-centered concentrical, invisible spheres, each of them rotating around its own and different axis and at different paces.[40] There are twenty-seven homocentric spheres with each sphere explaining a type of observable motion for each celestial object. Eudoxus emphasised that this is a purely mathematical construct of the model in the sense that the spheres of each celestial body do not exist, it just shows the possible positions of the bodies.[41]
Aristotelian universe Aristotle (384–322 BCE) Geocentric (based on Eudoxus' model), static, steady state, finite extent, infinite time Static and spherical Earth is surrounded by 43 to 55 concentric celestial spheres, which are material and crystalline.[42] Universe exists unchanged throughout eternity. Contains a fifth element, called aether, that was added to the four classical elements.[43]
Aristarchean universe Aristarchus (c.?280 BCE) Heliocentric Earth rotates daily on its axis and revolves annually about the Sun in a circular orbit. Sphere of fixed stars is centered about the Sun.[44]
Ptolemaic model Ptolemy (2nd century CE) Geocentric (based on Aristotelian universe) Universe orbits around a stationary Earth. Planets move in circular epicycles, each having a center that moved in a larger circular orbit (called an eccentric or a deferent) around a center-point near Earth. The use of equants added another level of complexity and allowed astronomers to predict the positions of the planets. The most successful universe model of all time, using the criterion of longevity. The Almagest (the Great System).
Capella's model Martianus Capella (c.?420) Geocentric and Heliocentric The Earth is at rest in the center of the universe and circled by the Moon, the Sun, three planets and the stars, while Mercury and Venus circle the Sun.[45]
Aryabhatan model Aryabhata (499) Geocentric or Heliocentric The Earth rotates and the planets move in elliptical orbits around either the Earth or Sun; uncertain whether the model is geocentric or heliocentric due to planetary orbits given with respect to both the Earth and Sun.
Quranic cosmology Quran (610–632 CE) Flat-earth The universe consists of stacked flat layers, including seven levels of heaven and in some interpretations seven levels of earth (including hell)
Medieval universe Medieval philosophers (500–1200) Finite in time A universe that is finite in time and has a beginning is proposed by the Christian philosopher John Philoponus, who argues against the ancient Greek notion of an infinite past. Logical arguments supporting a finite universe are developed by the early Muslim philosopher Al-Kindi, the Jewish philosopher Saadia Gaon, and the Muslim theologian Al-Ghazali.
Non-Parallel Multiverse Bhagvata Puran (800–1000) Multiverse, Non Parallel Innumerable universes is comparable to the multiverse theory, except nonparallel where each universe is different and individual jiva-atmas (embodied souls) exist in exactly one universe at a time. All universes manifest from the same matter, and so they all follow parallel time cycles, manifesting and unmanifesting at the same time.[46]
Multiversal cosmology Fakhr al-Din al-Razi (1149–1209) Multiverse, multiple worlds and universes There exists an infinite outer space beyond the known world, and God has the power to fill the vacuum with an infinite number of universes.
Maragha models Maragha school (1259–1528) Geocentric Various modifications to Ptolemaic model and Aristotelian universe, including rejection of equant and eccentrics at Maragheh observatory, and introduction of Tusi-couple by Al-Tusi. Alternative models later proposed, including the first accurate lunar model by Ibn al-Shatir, a model rejecting stationary Earth in favour of Earth's rotation by Ali Ku??u, and planetary model incorporating "circular inertia" by Al-Birjandi.
Nilakanthan model Nilakantha Somayaji (1444–1544) Geocentric and heliocentric A universe in which the planets orbit the Sun, which orbits the Earth; similar to the later Tychonic system.
Copernican universe Nicolaus Copernicus (1473–1543) Heliocentric with circular planetary orbits, finite extent First described in De revolutionibus orbium coelestium. The Sun is in the center of the universe, planets including Earth orbit the Sun, but the Moon orbits the Earth. The universe is limited by the sphere of the fixed stars.
Tychonic system Tycho Brahe (1546–1601) Geocentric and Heliocentric A universe in which the planets orbit the Sun and the Sun orbits the Earth, similar to the earlier Nilakanthan model.
Bruno's cosmology Giordano Bruno (1548–1600) Infinite extent, infinite time, homogeneous, isotropic, non-hierarchical Rejects the idea of a hierarchical universe. Earth and Sun have no special properties in comparison with the other heavenly bodies. The void between the stars is filled with aether, and matter is composed of the same four elements (water, earth, fire, and air), and is atomistic, animistic and intelligent.
De Magnete William Gilbert (1544–1603) Heliocentric, indefinitely extended Copernican heliocentrism, but he rejects the idea of a limiting sphere of the fixed stars for which no proof has been offered.[47]
Keplerian Johannes Kepler (1571–1630) Heliocentric with elliptical planetary orbits Kepler's discoveries, marrying mathematics and physics, provided the foundation for the present conception of the Solar System, but distant stars were still seen as objects in a thin, fixed celestial sphere.
Static Newtonian Isaac Newton (1642–1727) Static (evolving), steady state, infinite Every particle in the universe attracts every other particle. Matter on the large scale is uniformly distributed. Gravitationally balanced but unstable.
Cartesian Vortex universe René Descartes 17th century Static (evolving), steady state, infinite System of huge swirling whirlpools of aethereal or fine matter produces gravitational effects. But his vacuum was not empty; all space was filled with matter.
Hierarchical universe Immanuel Kant, Johann Lambert 18th century Static (evolving), steady state, infinite Matter is clustered on ever larger scales of hierarchy. Matter is endlessly recycled.
Einstein Universe with a cosmological constant Albert Einstein 1917 Static (nominally). Bounded (finite) "Matter without motion". Contains uniformly distributed matter. Uniformly curved spherical space; based on Riemann's hypersphere. Curvature is set equal to Λ. In effect Λ is equivalent to a repulsive force which counteracts gravity. Unstable.
De Sitter universe Willem de Sitter 1917 Expanding flat space.

Steady state. Λ > 0

"Motion without matter." Only apparently static. Based on Einstein's general relativity. Space expands with constant acceleration. Scale factor increases exponentially (constant inflation).
MacMillan universe William Duncan MacMillan 1920s Static and steady state New matter is created from radiation; starlight perpetually recycled into new matter particles.
Friedmann universe, spherical space Alexander Friedmann 1922 Spherical expanding space. k = +1 ; no Λ Positive curvature. Curvature constant k = +1

Expands then recollapses. Spatially closed (finite).

Friedmann universe, hyperbolic space Alexander Friedmann 1924 Hyperbolic expanding space. k = ?1 ; no Λ Negative curvature. Said to be infinite (but ambiguous). Unbounded. Expands forever.
Dirac large numbers hypothesis Paul Dirac 1930s Expanding Demands a large variation in G, which decreases with time. Gravity weakens as universe evolves.
Friedmann zero-curvature Einstein and De Sitter 1932 Expanding flat space

k = 0 ; Λ = 0 Critical density

Curvature constant k = 0. Said to be infinite (but ambiguous). "Unbounded cosmos of limited extent". Expands forever. "Simplest" of all known universes. Named after but not considered by Friedmann. Has a deceleration term q = 1/2, which means that its expansion rate slows down.
The original Big Bang (Friedmann-Lema?tre) Georges Lema?tre 1927–1929 Expansion

Λ > 0 ; Λ > |Gravity|

Λ is positive and has a magnitude greater than gravity. Universe has initial high-density state ("primeval atom"). Followed by a two-stage expansion. Λ is used to destabilize the universe. (Lema?tre is considered the father of the Big Bang model.)
Oscillating universe (Friedmann-Einstein) Favored by Friedmann 1920s Expanding and contracting in cycles Time is endless and beginningless; thus avoids the beginning-of-time paradox. Perpetual cycles of Big Bang followed by Big Crunch. (Einstein's first choice after he rejected his 1917 model.)
Eddington universe Arthur Eddington 1930 First static then expands Static Einstein 1917 universe with its instability disturbed into expansion mode; with relentless matter dilution becomes a De Sitter universe. Λ dominates gravity.
Milne universe of kinematic relativity Edward Milne 1933, 1935;

William H. McCrea 1930s

Kinematic expansion without space expansion Rejects general relativity and the expanding space paradigm. Gravity not included as initial assumption. Obeys cosmological principle and special relativity; consists of a finite spherical cloud of particles (or galaxies) that expands within an infinite and otherwise empty flat space. It has a center and a cosmic edge (surface of the particle cloud) that expands at light speed. Explanation of gravity was elaborate and unconvincing.
Friedmann–Lema?tre–Robertson–Walker class of models Howard Robertson, Arthur Walker 1935 Uniformly expanding Class of universes that are homogeneous and isotropic. Spacetime separates into uniformly curved space and cosmic time common to all co-moving observers. The formulation system is now known as the FLRW or Robertson–Walker metrics of cosmic time and curved space.
Steady-state Hermann Bondi, Thomas Gold 1948 Expanding, steady state, infinite Matter creation rate maintains constant density. Continuous creation out of nothing from nowhere. Exponential expansion. Deceleration term q = ?1.
Steady-state Fred Hoyle 1948 Expanding, steady state; but unstable Matter creation rate maintains constant density. But since matter creation rate must be exactly balanced with the space expansion rate the system is unstable.
Ambiplasma Hannes Alfvén 1965 Oskar Klein Cellular universe, expanding by means of matter–antimatter annihilation Based on the concept of plasma cosmology. The universe is viewed as "meta-galaxies" divided by double layers and thus a bubble-like nature. Other universes are formed from other bubbles. Ongoing cosmic matter-antimatter annihilations keep the bubbles separated and moving apart preventing them from interacting.
Brans–Dicke theory Carl H. Brans, Robert H. Dicke Expanding Based on Mach's principle. G varies with time as universe expands. "But nobody is quite sure what Mach's principle actually means."[citation needed]
Cosmic inflation Alan Guth 1980 Big Bang modified to solve horizon and flatness problems Based on the concept of hot inflation. The universe is viewed as a multiple quantum flux – hence its bubble-like nature. Other universes are formed from other bubbles. Ongoing cosmic expansion kept the bubbles separated and moving apart.
Eternal inflation (a multiple universe model) Andre? Linde 1983 Big Bang with cosmic inflation Multiverse based on the concept of cold inflation, in which inflationary events occur at random each with independent initial conditions; some expand into bubble universes supposedly like the entire cosmos. Bubbles nucleate in a spacetime foam.
Cyclic model Paul Steinhardt; Neil Turok 2002 Expanding and contracting in cycles; M-theory Two parallel orbifold planes or M-branes collide periodically in a higher-dimensional space. With quintessence or dark energy.
Cyclic model Lauris Baum; Paul Frampton 2007 Solution of Tolman's entropy problem Phantom dark energy fragments universe into large number of disconnected patches. The observable patch contracts containing only dark energy with zero entropy.

Table notes: the term "static" simply means not expanding and not contracting. Symbol G represents Newton's gravitational constant; Λ (Lambda) is the cosmological constant.

See also

edit

References

edit
  1. ^ Hille, Karl, ed. (13 October 2016). "Hubble Reveals Observable Universe Contains 10 Times More Galaxies Than Previously Thought". NASA. Retrieved 17 October 2016.
  2. ^ Hetherington, Norriss S. (2014). Encyclopedia of Cosmology (Routledge Revivals): Historical, Philosophical, and Scientific Foundations of Modern Cosmology. Routledge. p. 116. ISBN 978-1-317-67766-6.
  3. ^ Luminet, Jean-Pierre (2008). The Wraparound Universe. CRC Press. p. 170. ISBN 978-1-4398-6496-8. Extract of page 170.
  4. ^ "Introduction: Cosmology – space" Archived 3 July 2015 at the Wayback Machine. New Scientist. 4 September 2006.
  5. ^ "Cosmology", Oxford Dictionaries.
  6. ^ Overbye, Dennis (25 February 2019). "Have Dark Forces Been Messing With the Cosmos? – Axions? Phantom energy? Astrophysicists scramble to patch a hole in the universe, rewriting cosmic history in the process". The New York Times. Retrieved 26 February 2019.
  7. ^ Spergel, David N. (Fall 2014). "Cosmology Today". Daedalus. 143 (4): 125–133. doi:10.1162/DAED_a_00312. S2CID 57568214.
  8. ^ Planck Collaboration (1 October 2016). "Planck 2015 results. XIII. Cosmological parameters". Astronomy & Astrophysics. 594 (13). Table 4 on page 31 of PDF. arXiv:1502.01589. Bibcode:2016A&A...594A..13P. doi:10.1051/0004-6361/201525830. S2CID 119262962.
  9. ^ Diderot (Biography), Denis (1 April 2015). "Detailed Explanation of the System of Human Knowledge". Encyclopedia of Diderot & d'Alembert – Collaborative Translation Project. Retrieved 1 April 2015.
  10. ^ The thoughts of Marcus Aurelius Antoninus viii. 52.
  11. ^ Einstein, Albert (1952). "Cosmological considerations on the general theory of relativity". The Principle of Relativity. Dover. pp. 175–188. Bibcode:1952prel.book..175E.
  12. ^ Dodelson, Scott (30 March 2003). Modern Cosmology. Elsevier. ISBN 978-0-08-051197-9.
  13. ^ Falk, Dan (18 March 2009). "Review: The Day We Found the Universe by Marcia Bartusiak". New Scientist. 201 (2700): 45. doi:10.1016/S0262-4079(09)60809-5. ISSN 0262-4079.
  14. ^ Hubble, E. P. (1 December 1926). "Extragalactic nebulae". The Astrophysical Journal. 64: 321. Bibcode:1926ApJ....64..321H. doi:10.1086/143018. ISSN 0004-637X.
  15. ^ Martin, G. (1883). "G. DELSAULX. — Sur une propriété de la diffraction des ondes planes; Annales de la Société scientifique de Bruxelles; 1882". Journal de Physique Théorique et Appliquée (in French). 2 (1): 175. doi:10.1051/jphystap:018830020017501. ISSN 0368-3893.
  16. ^ Hubble, Edwin (15 March 1929). "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae". Proceedings of the National Academy of Sciences of the United States of America. 15 (3): 168–173. Bibcode:1929PNAS...15..168H. doi:10.1073/pnas.15.3.168. ISSN 0027-8424. PMC 522427. PMID 16577160.
  17. ^ Penzias, A. A.; Wilson, R. W. (1 July 1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". The Astrophysical Journal. 142: 419–421. Bibcode:1965ApJ...142..419P. doi:10.1086/148307. ISSN 0004-637X.
  18. ^ Boggess, N. W.; Mather, J. C.; Weiss, R.; Bennett, C. L.; Cheng, E. S.; Dwek, E.; Gulkis, S.; Hauser, M. G.; Janssen, M. A.; Kelsall, T.; Meyer, S. S. (1 October 1992). "The COBE mission – Its design and performance two years after launch". The Astrophysical Journal. 397: 420–429. Bibcode:1992ApJ...397..420B. doi:10.1086/171797. ISSN 0004-637X.
  19. ^ Parker, Barry R. (1993). The vindication of the big bang : breakthroughs and barriers. New York: Plenum Press. ISBN 0-306-44469-0. OCLC 27069165.
  20. ^ "Computer Graphics Achievement Award". ACM SIGGRAPH 2018 Awards. SIGGRAPH '18. Vancouver, British Columbia, Canada: Association for Computing Machinery. 12 August 2018. p. 1. doi:10.1145/3225151.3232529. ISBN 978-1-4503-5830-9. S2CID 51979217.
  21. ^ Science, American Association for the Advancement of (15 June 2007). "NETWATCH: Botany's Wayback Machine". Science. 316 (5831): 1547. doi:10.1126/science.316.5831.1547d. ISSN 0036-8075. S2CID 220096361.
  22. ^ Paraficz, D.; Hjorth, J.; Elíasdóttir, á (1 May 2009). "Results of optical monitoring of 5 SDSS double QSOs with the Nordic Optical Telescope". Astronomy & Astrophysics. 499 (2): 395–408. arXiv:0903.1027. Bibcode:2009A&A...499..395P. doi:10.1051/0004-6361/200811387. ISSN 0004-6361.
  23. ^ Alan Guth is reported to have made this very claim in an Edge Foundation interview. EDGE, Archived 11 April 2016 at the Wayback Machine.
  24. ^ Sample, Ian (4 June 2014). "Gravitational waves turn to dust after claims of flawed analysis". the Guardian.
  25. ^ Cowen, Ron (30 January 2015). "Gravitational waves discovery now officially dead". Nature. doi:10.1038/nature.2015.16830. S2CID 124938210.
  26. ^ Dennis Overbye (1 December 2014). "New Images Refine View of Infant Universe". The New York Times. Retrieved 2 December 2014.
  27. ^ Leonard & McClure 2004, pp. 32–33.
  28. ^ Crouch, C. L. (8 February 2010). "Genesis 1:26-7 As a statement of humanity's divine parentage". The Journal of Theological Studies. 61 (1): 1–15. doi:10.1093/jts/flp185.
  29. ^ "BICEP2 2014 Results Release". National Science Foundation. 17 March 2014. Retrieved 18 March 2014.
  30. ^ "Publications – Cosmos". www.cosmos.esa.int. Retrieved 19 August 2018.
  31. ^ Charles Kahn. 1994. Anaximander and the Origins of Greek Cosmology. Indianapolis: Hackett.
  32. ^ Aristotle, On the Heavens, ii, 13.
  33. ^ Most of Anaximander's model of the Universe comes from pseudo-Plutarch (II, 20–28):
    "[The Sun] is a circle twenty-eight times as big as the Earth, with the outline similar to that of a fire-filled chariot wheel, on which appears a mouth in certain places and through which it exposes its fire, as through the hole on a flute. [...] the Sun is equal to the Earth, but the circle on which it breathes and on which it's borne is twenty-seven times as big as the whole earth. [...] [The eclipse] is when the mouth from which comes the fire heat is closed. [...] [The Moon] is a circle nineteen times as big as the whole earth, all filled with fire, like that of the Sun".
  34. ^ Carl Benjamin Boyer (1968), A History of Mathematics. Wiley. ISBN 0471543977. p. 54.
  35. ^ Aristotle (1914). Forster, E. S.; Dobson, J. F. (eds.). De Mundo. Oxford University Press. 393a.
  36. ^ "The components from which he made the soul and the way in which he made it were as follows: In between the Being that is indivisible and always changeless, and the one that is divisible and comes to be in the corporeal realm, he mixed a third, intermediate form of being, derived from the other two. Similarly, he made a mixture of the Same, and then one of the Different, in between their indivisible and their corporeal, divisible counterparts. And he took the three mixtures and mixed them together to make a uniform mixture, forcing the Different, which was hard to mix, into conformity with the Same. Now when he had mixed these two with Being, and from the three had made a single mixture, he redivided the whole mixture into as many parts as his task required, each part remaining a mixture of the Same, the Different and Being." (Timaeus 35a–b), translation Donald J. Zeyl.
  37. ^ Plato, Timaeus, 36c.
  38. ^ Plato, Timaeus, 36d.
  39. ^ Plato, Timaeus, 39d.
  40. ^ Yavetz, Ido (February 1998). "On the Homocentric Spheres of Eudoxus". Archive for History of Exact Sciences. 52 (3): 222–225. Bibcode:1998AHES...52..222Y. doi:10.1007/s004070050017. JSTOR 41134047. S2CID 121186044.
  41. ^ Crowe, Michael (2001). Theories of the World from Antiquity to the Copernican Revolution. Mineola, New York: Dover. p. 23. ISBN 0-486-41444-2.
  42. ^ Easterling, H. (1961). "Homocentric Spheres in De Caelo". Phronesis. 6 (2): 138–141. doi:10.1163/156852861x00161. JSTOR 4181694.
  43. ^ Lloyd, G. E. R. (1968). The critic of Plato. Aristotle: The Growth and Structure of His Thought. Cambridge University Press. ISBN 978-0-521-09456-6.
  44. ^ Hirshfeld, Alan W. (2004). "The Triangles of Aristarchus". The Mathematics Teacher. 97 (4): 228–231. doi:10.5951/MT.97.4.0228. ISSN 0025-5769. JSTOR 20871578.
  45. ^ Bruce S. Eastwood, Ordering the Heavens: Roman Astronomy and Cosmology in the Carolingian Renaissance (Leiden: Brill, 2007), pp. 238–239.
  46. ^ Mirabello, Mark (15 September 2016). A Traveler's Guide to the Afterlife: Traditions and Beliefs on Death, Dying, and What Lies Beyond. Simon and Schuster. p. 23. ISBN 978-1-62055-598-9.
  47. ^ Gilbert, William (1893). "Book 6, Chapter III". De Magnete. Translated by Mottelay, P. Fleury. (Facsimile). New York: Dover Publications. ISBN 0-486-26761-X. {{cite book}}: ISBN / Date incompatibility (help)

Sources

edit
  • Bragg, Melvyn (2023). "The Universe's Shape". bbc.co.uk. BBC. Retrieved 23 May 2023. Melvyn Bragg discusses shape, size and topology of the universe and examines theories about its expansion. If it is already infinite, how can it be getting any bigger? And is there really only one?
  • "Cosmic Journey: A History of Scientific Cosmology". history.aip.org. American Institute of Physics. 2023. Retrieved 23 May 2023. The history of cosmology is a grand story of discovery, from ancient Greek astronomy to -space telescopes.
  • Dodelson, Scott; Schmidt, Fabian (2020). Modern Cosmology 2nd Edition. Academic Press. ISBN 978-0128159484. Download full text: Dodelson, Scott; Schmidt, Fabian (2020). "Scott Dodelson - Fabian Schmidt - Modern Cosmology (2021) PDF" (PDF). scribd.com. Academic Press. Retrieved 23 May 2023.
  • Charles Kahn. 1994. Anaximander and the Origins of Greek Cosmology. Indianapolis: Hackett.
  • "Genesis, Search for Origins. End of mission wrap up". genesismission.jpl.nasa.gov. NASA, Jet Propulsion Laboratory, California Institute of Technology. Retrieved 23 May 2023. About 4.6 billion years ago, the solar nebula transformed into the present solar system. In order to chemically model the processes which drove that transformation, we would, ideally, like to have a sample of that original nebula to use as a baseline from which we can track changes.
  • Leonard, Scott A; McClure, Michael (2004). Myth and Knowing. McGraw-Hill. ISBN 978-0-7674-1957-4.
  • Lyth, David (12 December 1993). "Introduction to Cosmology". arXiv:astro-ph/9312022. These notes form an introduction to cosmology with special emphasis on large scale structure, the cmb anisotropy and inflation. Lectures given at the Summer School in High Energy Physics and Cosmology, ICTP (Trieste) 1993.) 60 pages, plus 5 Figures.
  • "NASA/IPAC Extragalactic Database (NED)". ned.ipac.caltech.edu. NASA. 2023. Retrieved 23 May 2023. April 2023 Release Highlights Database Updates
  • Sophia Centre. The Sophia Centre for the Study of Cosmology in Culture, University of Wales Trinity Saint David.


梦到门坏了是什么意思 矢车菊在中国叫什么名 真性情是什么意思 吃中药为什么要忌口 小拇指和无名指发麻是什么原因
春运是什么意思 什么东西补气血效果最好 农历六月六是什么日子 d是什么单位 屋里有蝙蝠有什么预兆
脑萎缩是什么意思 己巳五行属什么 屠苏是什么意思 月经来了有血块是什么原因 法图麦在回族什么意思
儿童掉头发什么原因 82年是什么年 face是什么意思 燕子每年从什么方飞往什么方过冬 尿蛋白十一是什么意思
缺血灶是什么病hcv8jop8ns1r.cn 茄子能治什么病weuuu.com 兵马俑是什么意思hkuteam.com 冥是什么意思96micro.com 尿常规能查出什么hcv9jop4ns2r.cn
上海的市花是什么fenrenren.com 总想睡觉是什么原因hlguo.com 尿酸高喝什么水最好qingzhougame.com 满天星的花语是什么hcv7jop9ns1r.cn 黑龙江有什么特产hcv8jop7ns4r.cn
颈椎疼挂什么科室gangsutong.com 大便失禁是什么原因造成的hcv7jop5ns0r.cn 醋泡什么壮阳最快hcv8jop9ns3r.cn 情人总分分合合是什么歌hcv7jop9ns1r.cn 甲状腺结节挂什么科hcv8jop9ns0r.cn
甲状腺肿是什么意思hcv9jop7ns3r.cn 放化疗期间吃什么好hcv9jop3ns7r.cn 七月有什么花hcv9jop6ns7r.cn 吃什么治白头发hcv7jop5ns2r.cn 右冠优势型是什么意思hcv8jop6ns3r.cn
百度