尿崩症是什么症状| 什么是白带| 肺部感染挂什么科| 诚字属于五行属什么| 机不可失的下一句是什么| 支气管舒张试验阳性说明什么| 稽是什么意思| 白癜风是什么原因引起的| 天线宝宝都叫什么名字| 缺钙吃什么补得最快| 什么东西止血最快| kaws是什么牌子| 身上痒是什么原因| 什么的鼻子| 八字缺什么怎么算| 肛裂是什么症状| 邮戳是什么意思| 拔牙后能吃什么| 三公经费指什么| 茭白是什么| 第一次同房要注意什么| 嗓子疼流鼻涕吃什么药| 右眼皮跳有什么预兆| 喝绿茶有什么好处| 刻板是什么意思| 吃什么能快速补血| ex是什么的缩写| 十二月份是什么星座| 长期吃优甲乐有什么副作用| kate是什么意思| 序五行属什么| 9月10日是什么日子| 生物冰袋里面是什么| 印比是什么意思| 似乎的近义词是什么| 昕字五行属什么| 窦性心律吃什么药| 做梦梦到自己拉屎是什么意思| 什么是行政职务| 支气管哮喘吃什么药| 头顶冒汗是什么原因| 牙痛 吃什么药| 米其林是什么意思| 人夫是什么意思| 熟普属于什么茶| 洋芋是什么| 男人都是大猪蹄子是什么意思| 婴幼儿湿疹用什么药膏最有效| 什么星座最花心| 什么东西嘴里没有舌头| 米色配什么颜色好看| courvoisier是什么酒| 左脚麻是什么原因| 太妹是什么意思| 做梦房子倒塌什么预兆| 象牙塔比喻什么| 为什么男生| 什么是易孕体质| 2月24是什么星座| 为什么会有地震| 欲是什么意思| 五个月的宝宝能吃什么辅食| 叔叔老婆叫什么| 什么情况要做支气管镜| hpv16是什么| 什么的大叫| 白玫瑰代表什么意思| 吃什么长指甲最快| 什么树最值钱| 奥氮平片治疗什么病| 千呼万唤是什么生肖| 神采奕奕是什么意思| o和ab型生的孩子是什么血型| 风湿都有什么症状| 走路气喘是什么原因| 鹦鹉喜欢吃什么食物| 平身是什么意思| 两千年前是什么朝代| 为什么硬不起来| 什么帽不能戴| 血常规红细胞偏高是什么原因| 睡着了咳嗽是什么原因| 甲状腺囊肿不能吃什么| 尿液中有血是什么原因| 夏至吃什么传统美食| 小腿发凉是什么原因造成的| 紫苏什么味道| 舌头中间疼是什么原因| 肾亏是什么意思| 下旬是什么意思| 自言自语是什么| 天秤座有什么特点| 修女是什么意思| 梦见新坟墓是什么预兆| 稽留热常见于什么病| 十一月三十是什么星座| 地软有什么功效和作用| 骨髓纤维化是什么病| 11月20日什么星座| 角化异常性疾病是什么| 右手臂发麻是什么原因| 马华念什么| 小麦和大麦有什么区别| charleskeith什么牌子| 河豚是什么意思| 弓箭是什么时候发明的| 83岁属什么生肖| 格林巴利综合症是什么病| 方寸之地什么意思| 手术后放疗起什么作用| 晚上睡觉流口水是什么病| 章鱼属于什么类动物| 石榴木是什么生肖| 9月13日什么星座| 雪白的什么| bliss是什么意思| 罄竹难书的罄什么意思| 普瑞巴林胶囊治什么病| 男性尿频是什么问题| fa是什么意思| 颈椎压迫神经手麻吃什么药| 沂字五行属什么| 什么叫脑卒中| 不假思索的假是什么意思| 咽炎吃什么药最管用| 大米里放什么不生虫子| 广西为什么简称桂| 刷牙时牙酸是什么原因| 高职本科什么意思| 怀孕一个月内有什么反应| 拉肚子可以吃什么药| 吃什么食物能长高| 眉毛长白毛是什么征兆| 春秋是一部什么体史书| 转氨酶高吃什么药效果好| 舌头臭是什么原因| 女生的下体长什么样| 肾亏是什么意思| 腹泻可以吃什么食物| 中药包煎是什么意思| 百叶是什么| 艾叶是什么| 微笑表情代表什么意思| 尿酸高可以吃什么| 有因必有果什么意思| 人参吃了有什么好处| 肚子痛吃什么药| 梦见来月经是什么意思| 高血压吃什么降的快| 荷叶像什么比喻句| 一个巾一个占念什么| 头发硬适合什么发型| 芥花油是什么油| 13年属什么| 不加要是什么字| 给孩子测骨龄应该挂什么科| only是什么牌子| 天女散花是什么意思| 耳朵发痒是什么原因| 胸口疼痛是什么原因| 什么药可以消肿| 医联体是什么意思| 冠带是什么意思| 什么叫过渡句| 咳嗽不停是什么原因| 梦见蛇是什么意思| 官员出狱后靠什么生活| 鹿茸和什么泡酒壮阳| 头昏吃什么药效果最好| 男生被口什么感觉| 普洱茶适合什么季节喝| 皮下出血小红点是什么原因造成的| 人黄是什么原因| 什么样的天安门| 六娃的能力是什么| 螳螂捕蝉是什么意思| 稀料对人体有什么危害| 玫瑰花泡茶有什么功效| 子宫内膜增厚吃什么药| 做梦流产了是什么意思| 合胞病毒用什么药最好| 顶臀径是指什么| 纳是什么意思| 100岁是什么之年| 过期葡萄酒有什么用途| 包茎是什么| 青瓜是什么瓜| 血精和精囊炎吃什么药| 耕的左边读什么| 双侧瞳孔缩小见于什么| 胆囊结石不能吃什么| ykk是什么牌子| 奶思是什么意思| 熊猫为什么被称为国宝| 满目苍夷是什么意思| 丑小鸭告诉我们一个什么道理| 维生素吃多了有什么副作用| 什么的花| 右上腹是什么器官| 肋下未及是什么意思| 燕窝什么时候吃最好| palace是什么牌子| 戏谑是什么意思| ck是什么品牌| 为什么老长口腔溃疡| 头疼吃什么药最有效| 口腔上火了吃什么降火最快| 耳心痒是什么原因| 月桂酰两性基乙酸钠是什么| 补充蛋白质吃什么最好| 纨绔子弟是什么意思| 5月30日是什么星座| 发烧头疼吃什么药| 胰岛素抵抗有什么症状| 肺不好有什么症状| 大便不成形是什么原因造成的| 甲状腺结节什么原因引起的| 男生做爱什么感觉| 盘核桃有什么好处| 红细胞高什么原因| 牙齿为什么会掉| 女性喝什么利尿最快| 波菜不能和什么一起吃| 吃什么可以增强硬度| 左氧氟沙星治什么病| 女生无缘无故头疼是什么原因| ons是什么| 优势是什么意思| 吃紫菜有什么好处和坏处| 尿蛋白高是什么意思| 什么叫窦性心律不齐| qaq是什么意思| 小觑是什么意思| 素土是什么| 什么人不能吃火龙果| 什么是耐药性| 吃什么会变胖| 10月2号是什么星座| 肠炎挂什么科| 二月十六是什么星座| 八面玲珑是什么数字| 甲状腺五类是什么意思| 危险期是什么时候| 抽搐是什么原因引起的| 石英是什么| 肝内多发低密度影是什么意思| 香草味是什么味道| 丙氨酸氨基转移酶高是什么原因| 阿奇霉素和头孢有什么区别| 什么样的小鸟| 连续做噩梦是什么原因| 维生素b补什么的| 受精卵着床失败有什么症状| 许嵩为什么叫vae| 就绪是什么意思| 游离甲状腺素是什么| 什么茶降血糖| 美容行业五行属什么| nap是什么意思| 男人染上霉菌什么症状| 四环素片主要治什么病| 香菜什么时候种最合适| 引火下行是什么意思| 感染幽门螺旋杆菌吃什么药| 百度

用车最新攻略:汽车发动机烧机油的原因和检修

百度 我们现在需要搜集资料、评估和审视证据,才能得出最后结论。

In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are infinite flat planes in the same three-dimensional space that never meet. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called skew lines. Line segments and Euclidean vectors are parallel if they have the same direction or opposite direction (not necessarily the same length).[1]

=
Line art drawing of parallel lines and curves.

Parallel lines are the subject of Euclid's parallel postulate.[2] Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry, lines can have analogous properties that are referred to as parallelism. The concept can also be generalized non-straight parallel curves and non-flat parallel surfaces, which keep a fixed minimum distance and do not touch each other or intersect.

Symbol

edit

The parallel symbol is  .[3][4] For example,   indicates that line AB is parallel to line CD.

In the Unicode character set, the "parallel" and "not parallel" signs have codepoints U+2225 (∥) and U+2226 (?), respectively. In addition, U+22D5 (?) represents the relation "equal and parallel to".[5]

Euclidean parallelism

edit

Two lines in a plane

edit

Conditions for parallelism

edit
 
As shown by the tick marks, lines a and b are parallel. This can be proved because the transversal t produces congruent corresponding angles  , shown here both to the right of the transversal, one above and adjacent to line a and the other above and adjacent to line b.

Given parallel straight lines l and m in Euclidean space, the following properties are equivalent:

  1. Every point on line m is located at exactly the same (minimum) distance from line l (equidistant lines).
  2. Line m is in the same plane as line l but does not intersect l (recall that lines extend to infinity in either direction).
  3. When lines m and l are both intersected by a third straight line (a transversal) in the same plane, the corresponding angles of intersection with the transversal are congruent.

Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry.[6] The other properties are then consequences of Euclid's Parallel Postulate.

History

edit

The definition of parallel lines as a pair of straight lines in a plane which do not meet appears as Definition 23 in Book I of Euclid's Elements.[7] Alternative definitions were discussed by other Greeks, often as part of an attempt to prove the parallel postulate. Proclus attributes a definition of parallel lines as equidistant lines to Posidonius and quotes Geminus in a similar vein. Simplicius also mentions Posidonius' definition as well as its modification by the philosopher Aganis.[7]

At the end of the nineteenth century, in England, Euclid's Elements was still the standard textbook in secondary schools. The traditional treatment of geometry was being pressured to change by the new developments in projective geometry and non-Euclidean geometry, so several new textbooks for the teaching of geometry were written at this time. A major difference between these reform texts, both between themselves and between them and Euclid, is the treatment of parallel lines.[8] These reform texts were not without their critics and one of them, Charles Dodgson (a.k.a. Lewis Carroll), wrote a play, Euclid and His Modern Rivals, in which these texts are lambasted.[9]

One of the early reform textbooks was James Maurice Wilson's Elementary Geometry of 1868.[10] Wilson based his definition of parallel lines on the primitive notion of direction. According to Wilhelm Killing[11] the idea may be traced back to Leibniz.[12] Wilson, without defining direction since it is a primitive, uses the term in other definitions such as his sixth definition, "Two straight lines that meet one another have different directions, and the difference of their directions is the angle between them." Wilson (1868, p. 2) In definition 15 he introduces parallel lines in this way; "Straight lines which have the same direction, but are not parts of the same straight line, are called parallel lines." Wilson (1868, p. 12) Augustus De Morgan reviewed this text and declared it a failure, primarily on the basis of this definition and the way Wilson used it to prove things about parallel lines. Dodgson also devotes a large section of his play (Act II, Scene VI § 1) to denouncing Wilson's treatment of parallels. Wilson edited this concept out of the third and higher editions of his text.[13]

Other properties, proposed by other reformers, used as replacements for the definition of parallel lines, did not fare much better. The main difficulty, as pointed out by Dodgson, was that to use them in this way required additional axioms to be added to the system. The equidistant line definition of Posidonius, expounded by Francis Cuthbertson in his 1874 text Euclidean Geometry suffers from the problem that the points that are found at a fixed given distance on one side of a straight line must be shown to form a straight line. This can not be proved and must be assumed to be true.[14] The corresponding angles formed by a transversal property, used by W. D. Cooley in his 1860 text, The Elements of Geometry, simplified and explained requires a proof of the fact that if one transversal meets a pair of lines in congruent corresponding angles then all transversals must do so. Again, a new axiom is needed to justify this statement.

Construction

edit

The three properties above lead to three different methods of construction[15] of parallel lines.

 
The problem: Draw a line through a parallel to l.

Distance between two parallel lines

edit

Because parallel lines in a Euclidean plane are equidistant there is a unique distance between the two parallel lines. Given the equations of two non-vertical, non-horizontal parallel lines,

 
 

the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines and calculating the distance between them. Since the lines have slope m, a common perpendicular would have slope ?1/m and we can take the line with equation y = ?x/m as a common perpendicular. Solve the linear systems

 

and

 

to get the coordinates of the points. The solutions to the linear systems are the points

 

and

 

These formulas still give the correct point coordinates even if the parallel lines are horizontal (i.e., m = 0). The distance between the points is

 

which reduces to

 

When the lines are given by the general form of the equation of a line (horizontal and vertical lines are included):

 
 

their distance can be expressed as

 

Two lines in three-dimensional space

edit

Two lines in the same three-dimensional space that do not intersect need not be parallel. Only if they are in a common plane are they called parallel; otherwise they are called skew lines.

Two distinct lines l and m in three-dimensional space are parallel if and only if the distance from a point P on line m to the nearest point on line l is independent of the location of P on line m. This never holds for skew lines.

A line and a plane

edit

A line m and a plane q in three-dimensional space, the line not lying in that plane, are parallel if and only if they do not intersect.

Equivalently, they are parallel if and only if the distance from a point P on line m to the nearest point in plane q is independent of the location of P on line m.

Two planes

edit

Similar to the fact that parallel lines must be located in the same plane, parallel planes must be situated in the same three-dimensional space and contain no point in common.

Two distinct planes q and r are parallel if and only if the distance from a point P in plane q to the nearest point in plane r is independent of the location of P in plane q. This will never hold if the two planes are not in the same three-dimensional space.

In non-Euclidean geometry

edit

In non-Euclidean geometry, the concept of a straight line is replaced by the more general concept of a geodesic, a curve which is locally straight with respect to the metric (definition of distance) on a Riemannian manifold, a surface (or higher-dimensional space) which may itself be curved. In general relativity, particles not under the influence of external forces follow geodesics in spacetime, a four-dimensional manifold with 3 spatial dimensions and 1 time dimension.[16]

In non-Euclidean geometry (elliptic or hyperbolic geometry) the three Euclidean properties mentioned above are not equivalent and only the second one (Line m is in the same plane as line l but does not intersect l) is useful in non-Euclidean geometries, since it involves no measurements. In general geometry the three properties above give three different types of curves, equidistant curves, parallel geodesics and geodesics sharing a common perpendicular, respectively.

Hyperbolic geometry

edit
 
Intersecting, parallel and ultra parallel lines through a with respect to l in the hyperbolic plane. The parallel lines appear to intersect l just off the image. This is just an artifact of the visualisation. On a real hyperbolic plane the lines will get closer to each other and 'meet' in infinity.

While in Euclidean geometry two geodesics can either intersect or be parallel, in hyperbolic geometry, there are three possibilities. Two geodesics belonging to the same plane can either be:

  1. intersecting, if they intersect in a common point in the plane,
  2. parallel, if they do not intersect in the plane, but converge to a common limit point at infinity (ideal point), or
  3. ultra parallel, if they do not have a common limit point at infinity.[17]

In the literature ultra parallel geodesics are often called non-intersecting. Geodesics intersecting at infinity are called limiting parallel.

As in the illustration through a point a not on line l there are two limiting parallel lines, one for each direction ideal point of line l. They separate the lines intersecting line l and those that are ultra parallel to line l.

Ultra parallel lines have single common perpendicular (ultraparallel theorem), and diverge on both sides of this common perpendicular.


Spherical or elliptic geometry

edit
 
On the sphere there is no such thing as a parallel line. Line a is a great circle, the equivalent of a straight line in spherical geometry. Line c is equidistant to line a but is not a great circle. It is a parallel of latitude. Line b is another geodesic which intersects a in two antipodal points. They share two common perpendiculars (one shown in blue).

In spherical geometry, all geodesics are great circles. Great circles divide the sphere in two equal hemispheres and all great circles intersect each other. Thus, there are no parallel geodesics to a given geodesic, as all geodesics intersect. Equidistant curves on the sphere are called parallels of latitude analogous to the latitude lines on a globe. Parallels of latitude can be generated by the intersection of the sphere with a plane parallel to a plane through the center of the sphere.

Reflexive variant

edit

If l, m, n are three distinct lines, then  

In this case, parallelism is a transitive relation. However, in case l = n, the superimposed lines are not considered parallel in Euclidean geometry. The binary relation between parallel lines is evidently a symmetric relation. According to Euclid's tenets, parallelism is not a reflexive relation and thus fails to be an equivalence relation. Nevertheless, in affine geometry a pencil of parallel lines is taken as an equivalence class in the set of lines where parallelism is an equivalence relation.[18][19][20]

To this end, Emil Artin (1957) adopted a definition of parallelism where two lines are parallel if they have all or none of their points in common.[21] Then a line is parallel to itself so that the reflexive and transitive properties belong to this type of parallelism, creating an equivalence relation on the set of lines. In the study of incidence geometry, this variant of parallelism is used in the affine plane.

See also

edit

Notes

edit
  1. ^ Harris, John W.; St?cker, Horst (1998). Handbook of mathematics and computational science. Birkh?user. Chapter 6, p. 332. ISBN 0-387-94746-9.
  2. ^ Although this postulate only refers to when lines meet, it is needed to prove the uniqueness of parallel lines in the sense of Playfair's axiom.
  3. ^ Kersey (the elder), John (1673). Algebra. Vol. Book IV. London. p. 177.
  4. ^ Cajori, Florian (1993) [September 1928]. "§ 184, § 359, § 368". A History of Mathematical Notations - Notations in Elementary Mathematics. Vol. 1 (two volumes in one unaltered reprint ed.). Chicago, US: Open court publishing company. pp. 193, 402–403, 411–412. ISBN 0-486-67766-4. LCCN 93-29211. Retrieved 2025-08-07. §359. […] ∥ for parallel occurs in Oughtred's Opuscula mathematica hactenus inedita (1677) [p. 197], a posthumous work (§ 184) […] §368. Signs for parallel lines. […] when Recorde's sign of equality won its way upon the Continent, vertical lines came to be used for parallelism. We find ∥ for "parallel" in Kersey,[14] Caswell, Jones,[15] Wilson,[16] Emerson,[17] Kambly,[18] and the writers of the last fifty years who have been already quoted in connection with other pictographs. Before about 1875 it does not occur as often […] Hall and Stevens[1] use "par[1] or ∥" for parallel […] [14] John Kersey, Algebra (London, 1673), Book IV, p. 177. [15] W. Jones, Synopsis palmarioum matheseos (London, 1706). [16] John Wilson, Trigonometry (Edinburgh, 1714), characters explained. [17] W. Emerson, Elements of Geometry (London, 1763), p. 4. [18] L. Kambly [de], Die Elementar-Mathematik, Part 2: Planimetrie, 43. edition (Breslau, 1876), p. 8. […] [1] H. S. Hall and F. H. Stevens, Euclid's Elements, Parts I and II (London, 1889), p. 10. […] [1]
  5. ^ "Mathematical Operators – Unicode Consortium" (PDF). Retrieved 2025-08-07.
  6. ^ Wylie 1964, pp. 92—94
  7. ^ a b Heath 1956, pp. 190–194
  8. ^ Richards 1988, Chap. 4: Euclid and the English Schoolchild. pp. 161–200
  9. ^ Carroll, Lewis (2009) [1879], Euclid and His Modern Rivals, Barnes & Noble, ISBN 978-1-4351-2348-9
  10. ^ Wilson 1868
  11. ^ Einführung in die Grundlagen der Geometrie, I, p. 5
  12. ^ Heath 1956, p. 194
  13. ^ Richards 1988, pp. 180–184
  14. ^ Heath 1956, p. 194
  15. ^ Only the third is a straightedge and compass construction, the first two are infinitary processes (they require an "infinite number of steps".)
  16. ^ Church, Benjamin (2025-08-07). "A Not So Gentle Introduction to General Relativity" (PDF).
  17. ^ "5.3: Theorems of Hyperbolic Geometry". Mathematics LibreTexts. 2025-08-07. Retrieved 2025-08-07.
  18. ^ H. S. M. Coxeter (1961) Introduction to Geometry, p 192, John Wiley & Sons
  19. ^ Wanda Szmielew (1983) From Affine to Euclidean Geometry, p 17, D. Reidel ISBN 90-277-1243-3
  20. ^ Andy Liu (2011) "Is parallelism an equivalence relation?", The College Mathematics Journal 42(5):372
  21. ^ Emil Artin (1957) Geometric Algebra, page 52 via Internet Archive

References

edit
  • Heath, Thomas L. (1956), The Thirteen Books of Euclid's Elements (2nd ed. [Facsimile. Original publication: Cambridge University Press, 1925] ed.), New York: Dover Publications
(3 vols.): ISBN 0-486-60088-2 (vol. 1), ISBN 0-486-60089-0 (vol. 2), ISBN 0-486-60090-4 (vol. 3). Heath's authoritative translation plus extensive historical research and detailed commentary throughout the text.
  • Richards, Joan L. (1988), Mathematical Visions: The Pursuit of Geometry in Victorian England, Boston: Academic Press, ISBN 0-12-587445-6
  • Wilson, James Maurice (1868), Elementary Geometry (1st ed.), London: Macmillan and Co.
  • Wylie, C. R. Jr. (1964), Foundations of Geometry, McGraw–Hill

Further reading

edit
  • Papadopoulos, Athanase; Théret, Guillaume (2014), La théorie des parallèles de Johann Heinrich Lambert : Présentation, traduction et commentaires, Paris: Collection Sciences dans l'histoire, Librairie Albert Blanchard, ISBN 978-2-85367-266-5
过敏性鼻炎用什么药效果好 梦到老鼠是什么意思 壁虎在家里是什么征兆 拙作是什么意思 体外受精是什么意思
蚯蚓可以钓什么鱼 高血糖喝什么茶好 什么是阴阳水 口腔出血是什么病征兆 吃了紧急避孕药会有什么反应
吃什么可以变胖 手机充电慢是什么原因 什么是阴历什么是阳历 湿气重不能吃什么 一九四六年属什么生肖
哭笑不得是什么意思 双重人格是什么意思 送镜子代表什么意思 头晕做什么检查 血管瘤吃什么药
咽喉干燥是什么原因beikeqingting.com 一什么车厢hcv8jop1ns2r.cn 月经期间吃什么最好hcv8jop3ns6r.cn 什么叫染色体hcv9jop6ns2r.cn 卡介苗是预防什么的creativexi.com
盐酸二甲双胍缓释片什么时候吃hcv8jop6ns6r.cn 增强免疫力吃什么hcv8jop4ns8r.cn 飞吻是什么意思hcv9jop3ns4r.cn 马齿苋能治什么病hcv8jop7ns7r.cn 肺结节看什么科hcv7jop4ns7r.cn
公子是你吗是什么歌hcv7jop5ns2r.cn 头皮屑特别多是什么原因hcv7jop4ns8r.cn 头孢是治疗什么病的hcv8jop2ns2r.cn 钻石和锆石有什么区别hcv8jop2ns8r.cn 隐患是什么意思hcv8jop4ns5r.cn
什么是灰指甲hcv8jop9ns3r.cn 8.23是什么星座hcv9jop5ns2r.cn 碗莲什么时候开花hcv9jop2ns6r.cn 阳起石是什么东西hcv9jop0ns3r.cn 牙膏尾部的颜色代表什么意思hcv8jop2ns7r.cn
百度