萎缩性胃炎吃什么药| 便秘吃什么药能根治| 黑手是什么意思| positive是什么意思| 86属什么生肖| 银耳和什么一起煮最好| 吃完饭就想吐是什么原因| 什么是胰岛素抵抗| 长期拉肚子是什么原因| 变蛋是什么| 地龙是什么| 脑白质变性是什么病| 什么叫寓言故事| 中国姓什么的人最多| 警察两杠三星是什么级别| 皮肤真菌感染用什么药| 脂肪肝可以吃什么水果| 先算什么再算什么| 耳朵发热是什么原因| 榴莲为什么那么臭| 什么是生物制剂| 什么是脑卒中| 头皮很痒是什么原因| 我想成为一个什么样的人| 梦见抓蝎子是什么意思| 肛瘘是什么原因引起的| 瘆人是什么意思| 君子菜是什么蔬菜| 什么吃蚊子| 小产是什么意思| 幽门螺杆菌感染有什么症状| 孕妇吃什么蔬菜| 秋天有什么花| 擦汗表情是什么意思| 画蛇添足的寓意是什么| 尿道结石有什么症状| 乳头瘤病毒是什么病| 体检为什么要空腹| 六月十一是什么星座| 鸟加一笔变成什么字| 77年属什么| 这是什么英语| 苹果a1661是什么型号| 60岁男人喜欢什么样的女人| 左什么右什么| 反洗钱是什么意思| 荡秋千有什么好处| 花生碎能做什么食物吃| 胆红素高吃什么食物能降得快| 跑完步喝什么水最好| 自主能力是什么意思| 争奇斗艳什么意思| 查传染病四项挂什么科| 双氧水是什么东西| 笔画最多的字是什么| 天蝎座和什么座最配| 尿液中有白色沉淀物是什么原因| 肝硬化适合吃什么食物| 膀胱炎看什么科| bitch是什么意思| 青龙男是什么意思| 保险属于什么行业| 什么原因引起尿路感染| 肺结节吃什么食物散结节最快| 皮肤起水泡发痒是什么病| 手和脚发麻是什么原因| 住院医师是什么职称| 金鱼藻是什么植物| 什么上树全靠一张嘴| 头发一半白一半黑是什么原因| 罗红霉素胶囊治什么病| 淋巴细胞高是什么意思| 两女 一杯是什么| 什么运动长高最快| 虎皮羊质是指什么生肖| 打一个喷嚏代表什么| 乌冬面为什么叫乌冬面| 洗假牙用什么洗最好| 布洛芬不能和什么一起吃| 治疗幽门螺旋杆菌用什么药| 一家之主是什么意思| 运六月有什么说法| 为什么胸会痒| 明太鱼是什么鱼| 肾虚型脱发是什么样子| 喉咙发炎吃什么| 心肌缺血吃什么药| 足字旁的字跟什么有关| 左手臂麻木是什么征兆| 什么农药最毒| 沉香木是什么| 九孔藕和七孔藕有什么区别| 摄入是什么意思| 流产了有什么症状| 头发硬适合什么发型| cvd是什么意思| 行大运是什么意思| 口幼读什么| 内分泌失调是什么症状| 女人喝什么调节内分泌| 怀孕初期有什么表现| 鸡为什么喜欢吃泡沫| bid是什么意思啊| 生物钟什么意思| 为什么得带状疱疹| 近视手术有什么后遗症| 梦见兔子是什么预兆| 小孩咳嗽吃什么药效果最好| 泡脚出汗有什么好处| 坐阵是什么意思| 国花是什么花| 色是什么结构| 早上尿黄是什么原因| 晚上肚子疼是什么原因| 独角仙吃什么食物| 头发长的快是什么原因| 商标r是什么意思| 脚麻吃什么药有效| 保温杯什么牌子好| 湿疹擦什么药膏| 晚上睡觉脚冰凉是什么原因| 早泄有什么办法| tag什么意思| 舌中间有裂纹是什么原因| 大便很细是什么原因| 干咳挂什么科| zoom什么意思| 阑尾炎手术后可以吃什么| 1835年属什么生肖| 蛋蛋冰凉潮湿什么原因| 什么是矿泉水| 肠胃感冒吃什么药最好| 土猪肉和普通猪肉有什么分别| 癸未日五行属什么| 脊柱侧弯拍什么片子| 金不换是什么菜| 宫腔灌注是治疗什么的| 什么是恶露| 轻度脂肪肝有什么症状| 原发性高血压是什么意思| 石榴什么时候成熟| 小腿肌肉痛是什么原因| 家里停电打什么电话| 命门是什么意思| 倒斗是什么意思| 成人受到惊吓吃什么药| 人子是什么意思| 传媒公司是做什么的| 择日是什么意思| 肛瘘是什么原因造成的| 地级市副市长是什么级别| 点数是什么意思| 便秘了吃什么容易排便| 三月十六是什么星座| 失能是什么意思| 怀孕为什么会引起甲亢| 今天是什么日子啊| 男生手淫有什么危害| 侧柏是什么植物| 胃反流有什么症状| 红月亮是什么兆头| 一天当中什么时候血压最高| s档是什么档| 那敢情好是什么意思| 盆腔炎吃什么| 脚板心发热是什么原因| 移植后需要注意什么| 什么的列车| 大米发霉是什么样子| 吃什么水果可以美白| 泡菜生花用什么方法可以去掉| 肾积水吃什么药| 为什么会长闭口粉刺| 熟练的反义词是什么| 4月9号是什么星座| 脱肛吃什么药最有效| 人潮涌动是什么意思| 不来事是什么原因| 请示是什么意思| 胆囊手术后不能吃什么| 附件炎吃什么药效果好| kkkk是什么意思| 鼠目寸光是什么意思| 清热解毒是什么意思| 煤气罐为什么会爆炸| 脾肾阴虚有什么症状| 17年是什么年| 头皮屑大块是什么原因| 11月17号是什么星座| 打了麻药有什么副作用| 母的第三笔是什么| 上尉军衔是什么级别| 提前吃什么喝酒不醉| cd ts 什么意思| 身上长扁平疣是什么原因造成的| 眼睛痒吃什么药| 什么原因会怀上葡萄胎| 三国之前是什么朝代| 6.10号是什么星座| 4.28什么星座| 月经不来又没怀孕是什么原因| 子宫是什么样子图片| 辅助什么意思| 多西他赛是什么药| 小便有点刺痛是什么原因引起的| 产妇吃什么下奶快又多又营养| 属蛇本命佛是什么佛| viagra是什么药| 1966年是什么命| 画饼是什么意思| 男性肾虚有什么症状| 铁铁什么意思| 蜜蜂是什么生肖| 男性射精是什么感觉| 今天属什么生肖老黄历| 高血脂吃什么药效果好| 梦见买车是什么意思| 女人在什么时候最想男人| 好运连绵是什么意思| 砚字五行属什么| 为什么会得白癜风| 液金是什么| 孕育是什么意思| 发烧是什么感觉| 套路是什么意思| 顺风顺水是什么生肖| 木元念什么| 什么空如洗| 举案齐眉是什么意思| 月经两个月没来是什么原因| 虔婆是什么意思| 吃什么可以增加抵抗力和免疫力| 宝宝拉水便是什么原因| olay是什么牌子| 什么是火碱| 属狗和什么属相不合| 抗美援朝是什么时候| 胃癌手术后吃什么补品| 内分泌失调是什么原因| 单核细胞计数偏高是什么意思| 管科是什么专业| 人发胖的原因是什么引起的| 平躺就咳嗽是什么原因| 什么情况下要打破伤风针| 卵巢保养最好的方法是什么| 隐翅虫是什么| 右胸痛什么原因| hpv感染什么症状| 低俗是什么意思| 吃槟榔有什么危害| 儿童手指头脱皮什么原因引起的| 什么是偏头痛| 补气血喝什么茶| 卵巢囊肿吃什么药好得最快| 二刷是什么意思| 什么是远视眼| 洋葱炒什么菜好吃| 护理考研考什么| 哲理是什么意思| 下一年是什么生肖| 乙亥日五行属什么| 姐妹是什么意思| 妤字属于五行属什么| 好整以暇什么意思| 百度

走路快的人是什么性格

百度 我们不神话风口,因为只盯风口往往会失去一片森林,但风口的任何一次改变都会催生新的红利,这也是创业者的机会。

In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a vector bundle of rank 1.[1]

Line bundles are specified by choosing a one-dimensional vector space for each point of the space in a continuous manner. In topological applications, this vector space is usually real or complex. The two cases display fundamentally different behavior because of the different topological properties of real and complex vector spaces: If the origin is removed from the real line, then the result is the set of 1×1 invertible real matrices, which is homotopy-equivalent to a discrete two-point space by contracting the positive and negative reals each to a point; whereas removing the origin from the complex plane yields the 1×1 invertible complex matrices, which have the homotopy type of a circle.

From the perspective of homotopy theory, a real line bundle therefore behaves much the same as a fiber bundle with a two-point fiber, that is, like a double cover. A special case of this is the orientable double cover of a differentiable manifold, where the corresponding line bundle is the determinant bundle of the tangent bundle (see below). The M?bius strip corresponds to a double cover of the circle (the θ → 2θ mapping) and by changing the fiber, can also be viewed as having a two-point fiber, the unit interval as a fiber, or the real line.

Complex line bundles are closely related to circle bundles. There are some celebrated ones, for example the Hopf fibrations of spheres to spheres.

In algebraic geometry, an invertible sheaf (i.e., locally free sheaf of rank one) is often called a line bundle.

Every line bundle arises from a divisor under the following conditions:

(I) If is a reduced and irreducible scheme, then every line bundle comes from a divisor.
(II) If is a projective scheme then the same statement holds.

The tautological bundle on projective space

edit

One of the most important line bundles in algebraic geometry is the tautological line bundle on projective space. The projectivization   of a vector space   over a field   is defined to be the quotient of   by the action of the multiplicative group  . Each point of   therefore corresponds to a copy of  , and these copies of   can be assembled into a  -bundle over  . But   differs from   only by a single point, and by adjoining that point to each fiber, we get a line bundle on  . This line bundle is called the tautological line bundle. This line bundle is sometimes denoted   since it corresponds to the dual of the Serre twisting sheaf  .

Maps to projective space

edit

Suppose that   is a space and that   is a line bundle on  . A global section of   is a function   such that if   is the natural projection, then  . In a small neighborhood   in   in which   is trivial, the total space of the line bundle is the product of   and the underlying field  , and the section   restricts to a function  . However, the values of   depend on the choice of trivialization, and so they are determined only up to multiplication by a nowhere-vanishing function.

Global sections determine maps to projective spaces in the following way: Choosing   not all zero points in a fiber of   chooses a fiber of the tautological line bundle on  , so choosing   non-simultaneously vanishing global sections of   determines a map from   into projective space  . This map sends the fibers of   to the fibers of the dual of the tautological bundle. More specifically, suppose that   are global sections of  . In a small neighborhood   in  , these sections determine  -valued functions on   whose values depend on the choice of trivialization. However, they are determined up to simultaneous multiplication by a non-zero function, so their ratios are well-defined. That is, over a point  , the values  are not well-defined because a change in trivialization will multiply them each by a non-zero constant λ. But it will multiply them by the same constant λ, so the homogeneous coordinates   are well-defined as long as the sections   do not simultaneously vanish at  . Therefore, if the sections never simultaneously vanish, they determine a form   which gives a map from   to  , and the pullback of the dual of the tautological bundle under this map is  . In this way, projective space acquires a universal property.

The universal way to determine a map to projective space is to map to the projectivization of the vector space of all sections of  . In the topological case, there is a non-vanishing section at every point which can be constructed using a bump function which vanishes outside a small neighborhood of the point. Because of this, the resulting map is defined everywhere. However, the codomain is usually far, far too big to be useful. The opposite is true in the algebraic and holomorphic settings. Here the space of global sections is often finite dimensional, but there may not be any non-vanishing global sections at a given point. (As in the case when this procedure constructs a Lefschetz pencil.) In fact, it is possible for a bundle to have no non-zero global sections at all; this is the case for the tautological line bundle. When the line bundle is sufficiently ample this construction verifies the Kodaira embedding theorem.

Determinant bundles

edit

In general if   is a vector bundle on a space  , with constant fibre dimension  , the  -th exterior power of   taken fibre-by-fibre is a line bundle, called the determinant line bundle of  . This construction is in particular applied to the cotangent bundle of a smooth manifold. The resulting determinant bundle (more precisely, the bundle of a fixed nonegative power of the absolute values of its sections) is responsible for the phenomenon of tensor densities, in the sense that for an orientable manifold it has a nonvanishing global section, and its tensor powers with any real exponent may be defined and used to 'twist' any vector bundle by tensor product.

The same construction (taking the top exterior power) applies to a finitely generated projective module   over a Noetherian domain and the resulting invertible module is called the determinant module of  .

Characteristic classes, universal bundles and classifying spaces

edit

The first Stiefel–Whitney class classifies smooth real line bundles; in particular, the collection of (equivalence classes of) real line bundles are in correspondence with elements of the first cohomology with   coefficients; this correspondence is in fact an isomorphism of abelian groups (the group operations being tensor product of line bundles and the usual addition on cohomology). Analogously, the first Chern class classifies smooth complex line bundles on a space, and the group of line bundles is isomorphic to the second cohomology class with integer coefficients. However, bundles can have equivalent smooth structures (and thus the same first Chern class) but different holomorphic structures. The Chern class statements are easily proven using the exponential sequence of sheaves on the manifold.

One can more generally view the classification problem from a homotopy-theoretic point of view. There is a universal bundle for real line bundles, and a universal bundle for complex line bundles. According to general theory about classifying spaces, the heuristic is to look for contractible spaces on which there are group actions of the respective groups   and  , that are free actions. Those spaces can serve as the universal principal bundles, and the quotients for the actions as the classifying spaces  . In these cases we can find those explicitly, in the infinite-dimensional analogues of real and complex projective space.

Therefore the classifying space   is of the homotopy type of  , the real projective space given by an infinite sequence of homogeneous coordinates. It carries the universal real line bundle; in terms of homotopy theory that means that any real line bundle   on a CW complex   determines a classifying map from   to  , making   a bundle isomorphic to the pullback of the universal bundle. This classifying map can be used to define the Stiefel-Whitney class of  , in the first cohomology of   with   coefficients, from a standard class on  .

In an analogous way, the complex projective space   carries a universal complex line bundle. In this case classifying maps give rise to the first Chern class of  , in   (integral cohomology).

There is a further, analogous theory with quaternionic (real dimension four) line bundles. This gives rise to one of the Pontryagin classes, in real four-dimensional cohomology.

In this way foundational cases for the theory of characteristic classes depend only on line bundles. According to a general splitting principle this can determine the rest of the theory (if not explicitly).

There are theories of holomorphic line bundles on complex manifolds, and invertible sheaves in algebraic geometry, that work out a line bundle theory in those areas.

See also

edit

Notes

edit
  1. ^ Hartshorne (1975). Algebraic Geometry, Arcata 1974. p. 7.

References

edit
拉屎的时候拉出血来是什么原因 坚强后盾是什么意思 为什么会长结石 牙医靠什么吃饭 侄子是什么意思
梦见拖地是什么意思 ip指的是什么 拉肚子吃什么食物比较好 金兰之交是什么意思 轻微手足口病吃什么药
狗狗咬主人意味着什么 保姆是什么意思 为什么嘴里发苦 三里屯有什么好玩的地方 朱元璋为什么不杀朱棣
急腹症是什么意思 10月10号是什么星座 夏天煲什么汤最好 什么是阴唇 杏花是什么生肖
思字属于五行属什么hcv9jop5ns7r.cn 子时右眼跳是什么预兆hcv9jop7ns2r.cn 梦见杀蛇是什么意思hcv8jop9ns7r.cn 鸾凤和鸣什么意思hcv9jop0ns7r.cn 彩妆是什么意思liaochangning.com
虫草吃了有什么好处onlinewuye.com 蓝脸的窦尔敦盗御马是什么歌hcv8jop7ns7r.cn 背后长痘痘什么原因hcv9jop5ns9r.cn 甲亢吃什么盐好hcv8jop0ns5r.cn 爱新觉罗是什么意思hcv8jop9ns7r.cn
扎马步有什么好处hcv9jop2ns4r.cn 低密度脂蛋白偏高吃什么食物sscsqa.com 有口臭是什么原因hcv8jop0ns6r.cn 界限性脑电图是什么意思hcv8jop8ns7r.cn 球迷是什么意思hcv9jop8ns2r.cn
肛周脓肿吃什么药jiuxinfghf.com 什么榴莲最好吃hcv9jop8ns1r.cn 脚软没力气是什么原因引起的cl108k.com 龙代表什么数字aiwuzhiyu.com 老打嗝是什么病的前兆hcv9jop3ns1r.cn
百度