hbsag是什么| 1月19日什么星座| 你本来就很美是什么广告| 胸闷是什么原因引起的| 幽门螺旋杆菌是什么病| 小孩经常肚子疼是什么原因| 眼开大财主是什么生肖| canon是什么牌子| 风是什么结构| 下肢水肿挂什么科| 萎靡什么意思| jvc是什么牌子| 小辣椒是什么意思| 深海鱼油的作用是什么| 中将相当于什么级别| 看望老人买什么礼物好| 男人眉毛长代表什么| 白细胞低吃什么好| 小孩子腿疼是什么原因| 甲鱼和什么食物相克| 什么的天空| 倒卖是什么意思| 大便不调是什么意思| 中性粒细胞高是什么感染| 海带和什么菜搭配好吃| 更年期挂什么科| 为什么感冒会流眼泪| 紫色五行属什么| 灰指甲有什么危害| ab型和b型生的孩子是什么血型| 大暑什么时候| 血型阳性是什么意思| 醋有什么功效和作用| 弓山文念什么| tf口红什么牌子| 混圈是什么意思| 尿酸高多吃什么食物好| 湿疹是什么| 借口是什么意思| 曜字五行属什么| 心绞痛吃什么药最管用| 头晕出虚汗是什么原因引起的| 海带炖什么好吃| 葛根的作用是什么| 地龙是什么动物| 张牙舞爪的张是什么意思| ldh是什么| 梦见烧衣服什么预兆| 嗨体是什么| x线检查是什么| 肝阳性是什么意思| 深深是什么意思| 妇科炎症吃什么药最好| 糖浆是什么| 苦甲水是什么| 营卫不和是什么意思| 就加鸟念什么| 鼠是什么命| 荷尔蒙是什么| 孕妇感冒了可以吃什么药| 梦到和妈妈吵架是什么意思| 肚皮冰凉是什么原因呢| 上海五行属什么| 微量元素挂什么科| 老鼠是什么意思| 总胆汁酸高说明什么| 慢性浅表性胃炎吃什么药好| 宫颈ecc是什么意思| 男人送女人项链代表什么| 瑶是什么意思| 胎盘附着于子宫前壁是什么意思| 9.7号是什么星座| 诺如病毒吃什么药最有效| 吃东西就吐是什么原因| twice什么意思| 绝非偶然是什么意思| 吃避孕药对身体有什么影响| 四月十七是什么星座| 舔逼什么感觉| 给朋友送什么礼物好| 不含而立是什么意思| 卧底归来大结局是什么| 早期肠癌有什么症状| 为什么不| 戒指戴无名指是什么意思| 火龙果跟什么榨汁好喝| 男人右眉毛里有痣代表什么| 便秘吃什么快速通便| 三叉神经疼吃什么药| 孕吐什么时候出现| 高筋面粉适合做什么| 蜂胶是什么东西| 眼袋大是什么原因引起的| 2005年是什么命| 什么是av| 态生两靥之愁中靥指什么| 超声科是什么科室| 胆结石是什么原因造成的| 拉黑屎是什么原因| 护手霜什么牌子的效果好| 胸闷憋气是什么原因| 十月7号是什么星座| 苡字五行属什么| 茶叶渣属于什么垃圾| 早上起床牙龈出血是什么原因| 05年属什么| 干邑是什么意思| 腰椎滑脱是什么意思| 咸肉烧什么好吃| 怀孕前有什么症状| 黄皮不能和什么一起吃| 尿毒症什么原因引起的| 五台山是求什么的| 嗓子痛吃什么药| 射精是什么| 编程属于什么专业| 睾丸萎缩是什么原因| 四月初八是什么日子| 吃什么伤口愈合的快| 血小板异常是什么原因| 女人山根低代表什么| 善莫大焉是什么意思| 水蛭是什么动物| 15是什么意思| 灯火葳蕤是什么意思| 叉烧是什么| 肛周脓肿挂什么科| 后人是什么意思| 鸟在家里做窝预示什么| 脚后跟麻木是什么原因| 囧途什么意思| 体检什么时候去最好| 心季吃什么药| 男人喝藏红花有什么好处| 宫颈口在什么位置| 吃虾不能吃什么水果| 心衰为什么会引起水肿| 肝岛是什么意思| 玫瑰糠疹是什么病| 什么是肺腺瘤| 什么节气| 鹏字五行属什么| 吃什么可以让胸部变大| 心电图p是什么意思| 1989年出生是什么命| 全科医学科是什么科| 血小板低是什么原因造成的| 右手麻木是什么病| 宝宝在肚子里打嗝是什么原因| 治疗幽门螺杆菌用什么药效果最好| 属蛇男和什么属相最配| 多莉是什么鱼| 1941属什么生肖| 茯苓是什么植物| 夏天用什么带饭不馊| 结核杆菌是什么| 兹禧属什么生肖| 耳朵痒是什么原因| 骨刺是什么原因引起的| 陕西为什么叫三秦大地| 3月份生日是什么星座| 什么可以祛斑| 青红皂白的皂是什么颜色| 老年人脚肿挂什么科| 桂林有什么好玩的景点| 肠易激综合症用什么药能治好| 疑虑是什么意思| vod是什么意思| 胆囊炎吃什么中成药| 金箔是什么| 肺主什么| 哈密瓜为什么会苦| 戳什么意思| 痛风喝什么水| 嵌顿是什么意思| 女性失眠吃什么药最好| 手指头红是什么原因| 小孩体质差吃什么能增强抵抗力| 梦见被警察抓预示什么| 双非是什么| 古代的天花是现代的什么病| 扁桃体发炎喉咙痛吃什么药| 物欲横流是什么意思| 1025是什么星座| 微量元素检查挂什么科| 流泪痣是什么意思| 什么是血糖| 猕猴桃是什么季节的水果| 榴莲什么人不适合吃| 骨折吃什么钙片| 淋巴细胞百分比偏高是什么意思| 营养不良会导致身体出现什么症状| 变应原皮内试验是测什么的| 容易手麻脚麻是什么原因| 扩张是什么意思| 1974年属虎是什么命| 晚上喝什么茶好| 彩超挂什么科| 好学不倦什么意思| 物质是什么意思| 桑叶泡水喝有什么好处| 右腿麻木是什么征兆| bac是什么意思| 10月11日是什么星座| 封印是什么意思| 吃什么对肺最好| 屁股疼是什么原因引起的| 婴儿拉肚子是什么原因造成的| 后羿射日是什么意思| 静脉曲张是什么| 什么人不能喝绿豆汤| 阴虚体质是什么症状| medium什么意思| hp是什么单位| 碳酸氢钠是什么添加剂| 面部肌肉跳动是什么原因| 虎是什么意思| 狗不能吃什么| 凶神宜忌是什么意思| 怀孕胎盘低有什么影响| 办身份证的地方叫什么| 三农是什么| 肝内囊性灶什么意思| 埋伏牙是什么意思| 梦见怀孕的女人是什么意思| 备孕需要注意些什么| 云南白药气雾剂保险液有什么作用| 棕色裤子搭配什么颜色上衣| 进重症监护室意味什么| 白洞是什么东西| 低血糖的人吃什么东西最好| 嗓子老有痰是什么原因| 养肝护肝吃什么药| 地道战在河北什么地方| 背后长痘是什么原因| 喝咖啡有什么好处和坏处| 动脉导管未闭是什么意思| 慢慢地什么填词语| 吃茄子有什么坏处| 望而生畏是什么意思| 肺部气肿吃什么药能治好| 竹勿念什么| 什么叫法令纹| 法令纹上的痣代表什么| od是什么意思| 求人办事送什么礼物好| 75年的兔是什么命| 吃什么能让肠道蠕动快| 大姨妈期间不能吃什么东西| 舌头两边有齿痕是什么原因| 感冒挂号挂什么科| 立是什么结构的字| cr值是什么| 滞纳金是什么意思| disease是什么意思| 往生咒是什么意思| 什么龙| 孕妇手肿是什么原因| 餐边柜放什么东西| 宫颈机能不全是什么原因造成的| 嬴姓赵氏是什么意思| 右边肚子疼是什么原因| 碘伏和络合碘有什么区别| 核辐射是什么| 百度

他靠这个动作撩到了13岁的苏菲玛索 | 三三有梗

百度 同时,按照相关标准,在北京经济技术开发区、顺义区和海淀区确定了33条共计105公里的首批开放测试道路。

In the mathematics of chaos theory, a horseshoe map is any member of a class of chaotic maps of the square into itself. It is a core example in the study of dynamical systems. The map was introduced by Stephen Smale while studying the behavior of the orbits of the van der Pol oscillator. The action of the map is defined geometrically by squishing the square, then stretching the result into a long strip, and finally folding the strip into the shape of a horseshoe.

The Smale horseshoe map  f  is the composition of three geometrical transformations
Mixing in a real ball of colored putty after consecutive iterations of Smale horseshoe map

Most points eventually leave the square under the action of the map. They go to the side caps where they will, under iteration, converge to a fixed point in one of the caps. The points that remain in the square under repeated iteration form a fractal set and are part of the invariant set of the map.

The squishing, stretching and folding of the horseshoe map are typical of chaotic systems, but not necessary or even sufficient.[1]

In the horseshoe map, the squeezing and stretching are uniform. They compensate each other so that the area of the square does not change. The folding is done neatly, so that the orbits that remain forever in the square can be simply described.

For a horseshoe map:

  • there are an infinite number of periodic orbits;
  • periodic orbits of arbitrarily long period exist;
  • the number of periodic orbits grows exponentially with the period; and
  • close to any point of the fractal invariant set there is a point of a periodic orbit.

The horseshoe map

edit

The horseshoe map  f  is a diffeomorphism defined from a region S of the plane into itself. The region S is a square capped by two semi-disks. The codomain of   (the "horseshoe") is a proper subset of its domain  . The action of  f  is defined through the composition of three geometrically defined transformations. First the square is contracted along the vertical direction by a factor a < ?1/2?. The caps are contracted so as to remain semi-disks attached to the resulting rectangle. Contracting by a factor smaller than one half assures that there will be a gap between the branches of the horseshoe. Next the rectangle is stretched horizontally by a factor of ?1/a?; the caps remain unchanged. Finally the resulting strip is folded into a horseshoe-shape and placed back into S.

The interesting part of the dynamics is the image of the square into itself. Once that part is defined, the map can be extended to a diffeomorphism by defining its action on the caps. The caps are made to contract and eventually map inside one of the caps (the left one in the figure). The extension of f to the caps adds a fixed point to the non-wandering set of the map. To keep the class of horseshoe maps simple, the curved region of the horseshoe should not map back into the square.

The horseshoe map is one-to-one, which means that an inverse f?1 exists when restricted to the image of S under  f.

By folding the contracted and stretched square in different ways, other types of horseshoe maps are possible.

 
Variants of the horseshoe map

To ensure that the map remains one-to-one, the contracted square must not overlap itself. When the action on the square is extended to a diffeomorphism, the extension cannot always be done in the plane. For example, the map on the right needs to be extended to a diffeomorphism of the sphere by using a “cap” that wraps around the equator.

The horseshoe map is an Axiom A diffeomorphism that serves as a model for the general behavior at a transverse homoclinic point, where the stable and unstable manifolds of a periodic point intersect.

Dynamics of the map

edit

The horseshoe map was designed to reproduce the chaotic dynamics of a flow in the neighborhood of a given periodic orbit. The neighborhood is chosen to be a small disk perpendicular to the orbit. As the system evolves, points in this disk remain close to the given periodic orbit, tracing out orbits that eventually intersect the disk once again. Other orbits diverge.

The behavior of all the orbits in the disk can be determined by considering what happens to the disk. The intersection of the disk with the given periodic orbit comes back to itself every period of the orbit and so do points in its neighborhood. When this neighborhood returns, its shape is transformed. Among the points back inside the disk are some points that will leave the disk neighborhood and others that will continue to return. The set of points that never leaves the neighborhood of the given periodic orbit form a fractal.

A symbolic name can be given to all the orbits that remain in the neighborhood. The initial neighborhood disk can be divided into a small number of regions. Knowing the sequence in which the orbit visits these regions allows the orbit to be pinpointed exactly. The visitation sequence of the orbits provide a symbolic representation of the dynamics, known as symbolic dynamics.

Orbits

edit

It is possible to describe the behavior of all initial conditions of the horseshoe map. An initial point u0 = (x, y) gets mapped into the point u1 = f(u0). Its iterate is the point u2 = f(u1) = f 2(u0), and repeated iteration generates the orbit u0, u1, u2, ...

Under repeated iteration of the horseshoe map, most orbits end up at the fixed point in the left cap. This is because the horseshoe maps the left cap into itself by an affine transformation that has exactly one fixed point. Any orbit that lands on the left cap never leaves it and converges to the fixed point in the left cap under iteration. Points in the right cap get mapped into the left cap on the next iteration, and most points in the square get mapped into the caps. Under iteration, most points will be part of orbits that converge to the fixed point in the left cap, but some points of the square never leave.

Iterating the square

edit
 
Pre-images of the square region

Under forward iterations of the horseshoe map, the original square gets mapped into a series of horizontal strips. The points in these horizontal strips come from vertical strips in the original square. Let S0 be the original square, map it forward n times, and consider only the points that fall back into the square S0, which is a set of horizontal stripes

 

The points in the horizontal stripes came from the vertical stripes

 ,

which are the horizontal strips Hn mapped backwards n times. That is, a point in Vn will, under n iterations of the horseshoe, end up in the set Hn of vertical strips.

Invariant set

edit
 
Intersections that converge to the invariant set
 
Example of an invariant measure

If a point is to remain indefinitely in the square, then it must belong to a set Λ that maps to itself. Whether this set is empty or not has to be determined. The vertical strips V1 map into the horizontal strips H1, but not all points of V1 map back into V1. Only the points in the intersection of V1 and H1 may belong to Λ, as can be checked by following points outside the intersection for one more iteration.

The intersection of the horizontal and vertical stripes, HnVn, are squares that in the limit n → ∞ converge to the invariant set Λ (this set is an intersection of a Cantor set of vertical lines with a Cantor set of horizontal lines[2]). The structure of this set can be better understood by introducing a system of labels for all the intersections—a symbolic dynamics.

Symbolic dynamics

edit
 
The basic domains of the horseshoe map

Since HnVn ? V1, any point that is in Λ under iteration must land in the left vertical strip A of V1, or on the right vertical strip B. The lower horizontal strip of H1 is the image of A and the upper horizontal strip is the image of B, so H1 = f(A)f(B). The strips A and B can be used to label the four squares in the intersection of V1 and H1:

 

The set ΛB?A consist of points from strip A that were in strip B in the previous iteration. A dot is used to separate the region the point of an orbit is in from the region the point came from.

The notation can be extended to higher iterates of the horseshoe map. The vertical strips can be named according to the sequence of visits to strip A or strip B. For example, the set ABB ? V3 consists of the points from A that will all land in B in one iteration and remain in B in the iteration after that:

 

Working backwards from that trajectory determines a small region, the set ABB, within V3.

The horizontal strips are named from their vertical strip pre-images. In this notation, the intersection of V2 and H2 consists of 16 squares, one of which is

 

All the points in ΛAB?BB are in B and will continue to be in B for at least one more iteration. Their previous trajectory before landing in BB was A followed by B.

Periodic orbits

edit

Any one of the intersections ΛP?F of a horizontal strip with a vertical strip, where P and F are sequences of As and Bs, is an affine transformation of a small region in V1. If P has k symbols in it, and if  f ?kP?F) and ΛP?F intersect, the region ΛP?F will have a fixed point. This happens when the sequence P is the same as F. For example, ΛABAB?ABAB ? V4H4 has at least one fixed point. This point is also the same as the fixed point in ΛAB?AB. By including more and more ABs in the P and F part of the label of intersection, the area of the intersection can be made as small as needed. It converges to a point that is part of a periodic orbit of the horseshoe map. The periodic orbit can be labeled by the simplest sequence of As and Bs that labels one of the regions the periodic orbit visits.

For every sequence of As and Bs there is a periodic orbit.

See also

edit

Notes

edit
  1. ^ David Ruelle (2006). "What is a strange attractor?" (PDF). Notices of the American Mathematical Society. 53 (7): 764–765.
  2. ^ Ott, Edward (2002). Chaos in Dynamical Systems (2nd ed.). Cambridge University Press.

References

edit
edit
什么叫自闭症 大校相当于地方什么级别 学架子鼓有什么好处 散文是什么意思 肚子不舒服吃什么药
甲钴胺治疗什么病 呼吸困难胸闷气短挂什么科 身上长红色痣是什么原因 唐玄宗为什么叫唐明皇 birkin是什么意思
湿疹是什么意思 焦糖色是什么颜色 春宵一刻值千金是什么意思 印第安纹是什么 血压低有什么危险
为什么会精神衰弱 腱鞘炎要挂什么科 央行行长什么级别 大什么什么针 手脚发抖是什么原因引起的
窦性心动过速是什么原因hcv8jop7ns9r.cn 胎盘有什么用hcv8jop0ns4r.cn 出殡下雨是什么兆头hcv9jop1ns6r.cn 口干口苦挂什么科bysq.com 鱼肉百姓什么意思hcv9jop6ns4r.cn
三点水加个真念什么hcv9jop1ns1r.cn 老生常谈是什么意思hcv8jop7ns1r.cn 什么情况下不能献血hcv8jop8ns3r.cn 心影不大是什么意思hcv8jop1ns2r.cn 飞机杯是什么感觉hcv9jop4ns6r.cn
晚上多梦是什么原因hcv8jop3ns6r.cn 什么是走婚hcv9jop3ns0r.cn 贫血会引起什么症状hcv8jop3ns5r.cn 厥阴是什么意思hcv9jop4ns3r.cn 薏米有什么作用hcv8jop8ns5r.cn
肚子两侧疼是什么原因hcv8jop0ns1r.cn 比翼双飞是什么意思hcv7jop5ns2r.cn 茶叶属于什么类目hcv8jop0ns0r.cn 不知道饿是什么原因hcv8jop9ns0r.cn 吃什么能提高记忆力hcv7jop7ns2r.cn
百度