参谋长是什么级别| 七点到九点是什么时辰| 孩子长个子吃什么有利于长高| 皮肤镜能检查出什么| 喝什么茶减肥效果最好| 骨折吃什么药好得快| 七叶一枝花主治什么病| 宫内感染有什么症状| 莆田荔枝什么时候成熟| 什么牌子的沐浴露好| 红眼病不能吃什么东西| 小儿手足口病吃什么药| o型血是什么血型| 什么是雷达| 什么的草地| 尿液黄绿色是什么原因| 脸上出汗是什么原因| 上颌窦炎吃什么药| bmi是什么意思| 乙型肝炎e抗体阳性是什么意思| 白酒泡什么补肾壮阳最好| 胃阳不足吃什么中成药| 负面影响是什么意思| 梦到蛇是什么意思| 舌头痒是什么原因| 得了破伤风是什么症状| 拔牙挂什么科室| 查生化是查些什么| autumn是什么意思| 咬牙切齿什么意思| 三宝是什么意思| 秋天有什么植物| 夜间多梦是什么原因| 无稽之谈是什么意思| 稀饭配什么菜好吃| 妨夫是什么意思| 什么是脂蛋白a| 脚上长鸡眼是什么原因| 爱马仕是什么品牌| 新加坡什么工作最挣钱| 祖马龙香水什么档次| 绍兴酒是什么酒| 解解乏是什么意思| 九死一生是指什么生肖| 暨怎么读什么意思| 肺纹理增强是什么意思| 为什么会得肩周炎| 梦见自己掉牙是什么意思| 乳腺炎吃什么药| 主理人什么意思| 痘痘挤出来的白色东西是什么| 六味地黄丸有什么作用| 心肝血虚吃什么中成药| 左肩膀疼痛是什么原因| 免疫固定电泳查什么的| 女性尿频吃什么药| 雷锋属什么生肖| 千里走单骑是什么意思| 4月20号是什么星座| 扁平疣是什么| 知了在树上干什么| 什么地指挥| 9月26号是什么星座| 什么笔记本电脑好| 副营级是什么军衔| 宫颈活检lsil是什么病| 紧张是什么意思| 右眼睛跳是什么原因| 心火旺吃什么药| 茯茶是什么茶| 出现幻觉是什么原因引起的| 一切就绪是什么意思| 元旦送老师什么礼物| 政协委员是什么级别| 10.1是什么星座| fmc是什么意思| 拉拉裤是什么| 上呼吸道感染吃什么消炎药| 空腹洗澡有什么危害| 什么是七杀命格| 狐狸吊坠有什么寓意| 8023什么意思| 相位是什么意思| 痛风吃什么蔬菜好| 胃病能吃什么水果| gif什么意思| 柯基犬为什么要断尾巴| 染色体异常是什么原因导致的| 专政是什么意思| 96年出生的属什么| 什么样的毛刺是良性的| 半边脸疼是什么原因引起的| 卧蚕和眼袋有什么区别| 心计是什么意思| 恻隐之心是什么意思| 95年的属什么| 膀胱钙化是什么意思| 七情六欲是什么意思| 感激不尽是什么意思| 天天喝奶茶有什么危害| 阿玛尼算什么档次| 头疼发烧是什么原因| 保健品是什么| 局级干部是什么级别| 什么网站可以看黄色视频| 肾火旺有什么症状| 萝卜炖什么好吃| 鼻窦炎有什么特效药| 转移酶偏高是什么原因| 荨麻疹能吃什么| s是什么牌子| g1是什么意思| 太阳一晒脸就红是什么原因| 尿道灼热感吃什么药| 毛骨悚然是什么意思| 这个季节有什么水果| 哺乳期牙龈肿痛可以吃什么药| 布洛芬治什么| 牙齿松动吃什么药| 哆啦a梦大结局是什么| 小猫为什么一直叫| 焦虑症用什么药好| 经常拉肚子吃什么药好| 10度左右穿什么衣服合适| puma是什么品牌| 泉肌症是什么病| 吝啬的意思是什么| 皮赘是什么| KH是什么| 暂住证办理需要什么材料| 风疹是什么原因引起的| 旦角是什么意思| 什么叫同理心| 戏耍的近义词是什么| 水乳是什么| 龙舌兰是什么酒| 小肚胀是什么原因| 胃打嗝是什么原因| 世界上最难的数学题是什么| 什么药可以通血管| 草字头有什么字| 三生万物是什么意思| 打嗝不停吃什么药| 人面桃花相映红是什么意思| 外阴瘙痒抹什么药| 手机壳什么材质好| 婷婷玉立什么意思| 非诚勿扰什么意思| 血压高什么原因引起的| 乳腺彩超能查出什么| 什么叫肺部纤维灶| 养肝护肝喝什么茶最好| 5月6号是什么星座| 眩晕症什么症状| 口吐白沫是什么生肖| 南瓜和什么食物相克| 宫颈口出血是什么原因| 三原色是什么| 胰腺癌晚期什么症状| 日字五行属什么| 精神慰藉什么意思| 二球是什么意思| 暖宫贴贴在什么位置| 中央电视台台长是什么级别| 多吃黄瓜有什么好处和坏处| 蓟什么意思| 眼前有亮光闪是什么问题| 3月12是什么星座| 运动前吃什么| 相向而行什么意思| 脑血管痉挛是什么原因引起的| 下肢静脉血栓吃什么药| 自慰用什么| 氧分压是什么意思| 口干什么原因| 木姜子什么味道| 失眠多梦用什么药| carol什么意思| 许愿是什么意思| 金色搭配什么颜色好看| 怀孕送什么礼物| live什么意思| 斗鱼吃什么食物| 0l是什么意思| cos代表什么意思| 天恩是什么意思| 世界上最软的东西是什么| 放屁多是什么病的征兆| 蒲公英泡水喝有什么好处| 腰痛吃什么药| 羡字五行属什么| 减持是什么意思| 血清胃功能检测是什么| 脸上长斑是因为什么原因引起的| 为什么屁多是什么原因| 胃酸是什么颜色的| 巴基斯坦讲什么语言| 鸡是什么类| 张良和刘邦是什么关系| 便血鲜红色无疼痛是什么原因| 钱串子进屋有什么预兆| 为什么吃完饭就想拉屎| 为什么要拔掉智齿| 血糖高吃什么肉最好| 7月去青海带什么衣服| 肺部不好有什么症状| 什么是窦性心律| 双侧骶髂关节致密性骨炎是什么病| 为什么牙缝里的东西很臭| 油性皮肤适合用什么护肤品| 喝水喝多了有什么坏处| 不食人间烟火是什么意思| 梦见捡到钱是什么意思| 广西古代叫什么| 恶风是什么意思| 豆腐干炒什么菜好吃| 心率过快挂什么科| 后妈是什么意思| 小肚子胀是什么原因女性| 吃什么补气虚| 麦冬是什么| 忌诸事不宜什么意思| 坚什么什么什么成语| 复方氨酚烷胺胶囊是什么药| 肝内低密度灶什么意思| 前什么后什么| 婴儿湿疹用什么| 香菜什么时候种最合适| 吃马齿菜有什么好处| 七匹狼属于什么档次| 七月七是什么节日| 六神无主是什么意思| 颈椎病用什么药最好| 夜尿多是什么原因| 羊肚菌有什么功效和作用| 胆挂什么科| 宫颈口出血是什么原因| 什么牌子的洗发水好| 墨镜镜片什么材质好| 尿频是什么原因造成的| 送镜子代表什么意思| 伤口结痂为什么会痒| 吃什么去肝火最快| 咳嗽什么原因引起的| 苹果什么时候吃最好| 吕布属什么生肖| 柠檬有什么功效和作用| 夏天喝什么饮料好| 那天午后我站在你家门口什么歌| 意大利面是用什么做的| tvb是什么意思| noon什么意思| 查肝肾功能挂什么科| 白羊男喜欢什么样的女生| 吃榴莲对妇科病有什么好处| 老舍原名什么| 花指什么生肖| 乙肝有什么症状| 奔跑吧什么时候更新| faye是什么意思| 8月7日是什么星座| 恶作剧是什么意思| 肝胆湿热用什么药| 舒字属于五行属什么| 百度

受够了台式机和笨重笔记本?未来你可以买这种电脑

百度   人民网北京8月23日电(记者贾玥)为期一天半的全国来访接待工作会议22日在京落幕。

In quantum computing, Grover's algorithm, also known as the quantum search algorithm, is a quantum algorithm for unstructured search that finds with high probability the unique input to a black box function that produces a particular output value, using just evaluations of the function, where is the size of the function's domain. It was devised by Lov Grover in 1996.[1]

The analogous problem in classical computation would have a query complexity (i.e., the function would have to be evaluated times: there is no better approach than trying out all input values one after the other, which, on average, takes steps).[1]

Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani proved that any quantum solution to the problem needs to evaluate the function times, so Grover's algorithm is asymptotically optimal.[2] Since classical algorithms for NP-complete problems require exponentially many steps, and Grover's algorithm provides at most a quadratic speedup over the classical solution for unstructured search, this suggests that Grover's algorithm by itself will not provide polynomial-time solutions for NP-complete problems (as the square root of an exponential function is still an exponential, not a polynomial function).[3]

Unlike other quantum algorithms, which may provide exponential speedup over their classical counterparts, Grover's algorithm provides only a quadratic speedup. However, even quadratic speedup is considerable when is large, and Grover's algorithm can be applied to speed up broad classes of algorithms.[3] Grover's algorithm could brute-force a 128-bit symmetric cryptographic key in roughly 264 iterations, or a 256-bit key in roughly 2128 iterations. It may not be the case that Grover's algorithm poses a significantly increased risk to encryption over existing classical algorithms, however.[4]

Applications and limitations

edit

Grover's algorithm, along with variants like amplitude amplification, can be used to speed up a broad range of algorithms.[5][6][7] In particular, algorithms for NP-complete problems which contain exhaustive search as a subroutine can be sped up by Grover's algorithm.[6] The current theoretical best algorithm, in terms of worst-case complexity, for 3SAT is one such example. Generic constraint satisfaction problems also see quadratic speedups with Grover.[8] These algorithms do not require that the input be given in the form of an oracle, since Grover's algorithm is being applied with an explicit function, e.g. the function checking that a set of bits satisfies a 3SAT instance. However, it is unclear whether Grover's algorithm could speed up best practical algorithms for these problems.

Grover's algorithm can also give provable speedups for black-box problems in quantum query complexity, including element distinctness[9] and the collision problem[10] (solved with the Brassard–H?yer–Tapp algorithm). In these types of problems, one treats the oracle function f as a database, and the goal is to use the quantum query to this function as few times as possible.

Cryptography

edit

Grover's algorithm essentially solves the task of function inversion. Roughly speaking, if we have a function   that can be evaluated on a quantum computer, Grover's algorithm allows us to calculate   when given  . Consequently, Grover's algorithm gives broad asymptotic speed-ups to many kinds of brute-force attacks on symmetric-key cryptography, including collision attacks and pre-image attacks.[11] However, this may not necessarily be the most efficient algorithm since, for example, the Pollard's rho algorithm is able to find a collision in SHA-2 more efficiently than Grover's algorithm.[12]

Limitations

edit

Grover's original paper described the algorithm as a database search algorithm, and this description is still common. The database in this analogy is a table of all of the function's outputs, indexed by the corresponding input. However, this database is not represented explicitly. Instead, an oracle is invoked to evaluate an item by its index. Reading a full database item by item and converting it into such a representation may take a lot longer than Grover's search. To account for such effects, Grover's algorithm can be viewed as solving an equation or satisfying a constraint. In such applications, the oracle is a way to check the constraint and is not related to the search algorithm. This separation usually prevents algorithmic optimizations, whereas conventional search algorithms often rely on such optimizations and avoid exhaustive search.[13] Fortunately, fast Grover's oracle implementation is possible for many constraint satisfaction and optimization problems.[14]

The major barrier to instantiating a speedup from Grover's algorithm is that the quadratic speedup achieved is too modest to overcome the large overhead of near-term quantum computers.[15] However, later generations of fault-tolerant quantum computers with better hardware performance may be able to realize these speedups for practical instances of data.

Problem description

edit

As input for Grover's algorithm, suppose we have a function  . In the "unstructured database" analogy, the domain represent indices to a database, and f(x) = 1 if and only if the data that x points to satisfies the search criterion. We additionally assume that only one index satisfies f(x) = 1, and we call this index ω. Our goal is to identify ω.

We can access f with a subroutine (sometimes called an oracle) in the form of a unitary operator Uω that acts as follows:

 

This uses the  -dimensional state space  , which is supplied by a register with   qubits. This is often written as

 

Grover's algorithm outputs ω with probability at least 1/2 using   applications of Uω. This probability can be made arbitrarily large by running Grover's algorithm multiple times. If one runs Grover's algorithm until ω is found, the expected number of applications is still  , since it will only be run twice on average.

Alternative oracle definition

edit

This section compares the above oracle   with an oracle  .

Uω is different from the standard quantum oracle for a function f. This standard oracle, denoted here as Uf, uses an ancillary qubit system. The operation then represents an inversion (NOT gate) on the main system conditioned by the value of f(x) from the ancillary system:

 

or briefly,

 

These oracles are typically realized using uncomputation.

If we are given Uf as our oracle, then we can also implement Uω, since Uω is Uf when the ancillary qubit is in the state  :

 

So, Grover's algorithm can be run regardless of which oracle is given.[3] If Uf is given, then we must maintain an additional qubit in the state   and apply Uf in place of Uω.

Algorithm

edit
 
Quantum circuit representation of Grover's algorithm

The steps of Grover's algorithm are given as follows:

  1. Initialize the system to the uniform superposition over all states
     
  2. Perform the following "Grover iteration"   times:
    1. Apply the operator  
    2. Apply the Grover diffusion operator  
  3. Measure the resulting quantum state in the computational basis.

For the correctly chosen value of  , the output will be   with probability approaching 1 for N ? 1. Analysis shows that this eventual value for   satisfies  .

Implementing the steps for this algorithm can be done using a number of gates linear in the number of qubits.[3] Thus, the gate complexity of this algorithm is  , or   per iteration.

Geometric proof

edit
 
Picture showing the geometric interpretation of the first iteration of Grover's algorithm. The state vector   is rotated towards the target vector   as shown.

There is a geometric interpretation of Grover's algorithm, following from the observation that the quantum state of Grover's algorithm stays in a two-dimensional subspace after each step. Consider the plane spanned by   and  ; equivalently, the plane spanned by   and the perpendicular ket  .

Grover's algorithm begins with the initial ket  , which lies in the subspace. The operator   is a reflection at the hyperplane orthogonal to   for vectors in the plane spanned by   and  , i.e. it acts as a reflection across  . This can be seen by writing   in the form of a Householder reflection:

 

The operator   is a reflection through  . Both operators   and   take states in the plane spanned by   and   to states in the plane. Therefore, Grover's algorithm stays in this plane for the entire algorithm.

It is straightforward to check that the operator   of each Grover iteration step rotates the state vector by an angle of  . So, with enough iterations, one can rotate from the initial state   to the desired output state  . The initial ket is close to the state orthogonal to  :

 

In geometric terms, the angle   between   and   is given by

 

We need to stop when the state vector passes close to  ; after this, subsequent iterations rotate the state vector away from  , reducing the probability of obtaining the correct answer. The exact probability of measuring the correct answer is

 

where r is the (integer) number of Grover iterations. The earliest time that we get a near-optimal measurement is therefore  .

Algebraic proof

edit

To complete the algebraic analysis, we need to find out what happens when we repeatedly apply  . A natural way to do this is by eigenvalue analysis of a matrix. Notice that during the entire computation, the state of the algorithm is a linear combination of   and  . We can write the action of   and   in the space spanned by   as:

 

So in the basis   (which is neither orthogonal nor a basis of the whole space) the action   of applying   followed by   is given by the matrix

 

This matrix happens to have a very convenient Jordan form. If we define  , it is

 

where  

It follows that r-th power of the matrix (corresponding to r iterations) is

 

Using this form, we can use trigonometric identities to compute the probability of observing ω after r iterations mentioned in the previous section,

 

Alternatively, one might reasonably imagine that a near-optimal time to distinguish would be when the angles 2rt and ?2rt are as far apart as possible, which corresponds to  , or  . Then the system is in state

 

A short calculation now shows that the observation yields the correct answer ω with error  .

Extensions and variants

edit

Multiple matching entries

edit

If, instead of 1 matching entry, there are k matching entries, the same algorithm works, but the number of iterations must be  instead of  

There are several ways to handle the case if k is unknown.[16] A simple solution performs optimally up to a constant factor: run Grover's algorithm repeatedly for increasingly small values of k, e.g., taking k = N, N/2, N/4, ..., and so on, taking   for iteration t until a matching entry is found.

With sufficiently high probability, a marked entry will be found by iteration   for some constant c. Thus, the total number of iterations taken is at most

 

Another approach if k is unknown is to derive it via the quantum counting algorithm prior.

If   (or the traditional one marked state Grover's Algorithm if run with  ), the algorithm will provide no amplification. If  , increasing k will begin to increase the number of iterations necessary to obtain a solution.[17] On the other hand, if  , a classical running of the checking oracle on a single random choice of input will more likely than not give a correct solution.

A version of this algorithm is used in order to solve the collision problem.[18][19]

edit

A modification of Grover's algorithm called quantum partial search was described by Grover and Radhakrishnan in 2004.[20] In partial search, one is not interested in finding the exact address of the target item, only the first few digits of the address. Equivalently, we can think of "chunking" the search space into blocks, and then asking "in which block is the target item?". In many applications, such a search yields enough information if the target address contains the information wanted. For instance, to use the example given by L. K. Grover, if one has a list of students organized by class rank, we may only be interested in whether a student is in the lower 25%, 25–50%, 50–75% or 75–100% percentile.

To describe partial search, we consider a database separated into   blocks, each of size  . The partial search problem is easier. Consider the approach we would take classically – we pick one block at random, and then perform a normal search through the rest of the blocks (in set theory language, the complement). If we do not find the target, then we know it is in the block we did not search. The average number of iterations drops from   to  .

Grover's algorithm requires   iterations. Partial search will be faster by a numerical factor that depends on the number of blocks  . Partial search uses   global iterations and   local iterations. The global Grover operator is designated   and the local Grover operator is designated  .

The global Grover operator acts on the blocks. Essentially, it is given as follows:

  1. Perform   standard Grover iterations on the entire database.
  2. Perform   local Grover iterations. A local Grover iteration is a direct sum of Grover iterations over each block.
  3. Perform one standard Grover iteration.

The optimal values of   and   are discussed in the paper by Grover and Radhakrishnan. One might also wonder what happens if one applies successive partial searches at different levels of "resolution". This idea was studied in detail by Vladimir Korepin and Xu, who called it binary quantum search. They proved that it is not in fact any faster than performing a single partial search.

Optimality

edit

Grover's algorithm is optimal up to sub-constant factors. That is, any algorithm that accesses the database only by using the operator Uω must apply Uω at least a   fraction as many times as Grover's algorithm.[21] The extension of Grover's algorithm to k matching entries, π(N/k)1/2/4, is also optimal.[18] This result is important in understanding the limits of quantum computation.

If the Grover's search problem was solvable with logc N applications of Uω, that would imply that NP is contained in BQP, by transforming problems in NP into Grover-type search problems. The optimality of Grover's algorithm suggests that quantum computers cannot solve NP-Complete problems in polynomial time, and thus NP is not contained in BQP.

It has been shown that a class of non-local hidden variable quantum computers could implement a search of an  -item database in at most   steps. This is faster than the   steps taken by Grover's algorithm.[22]

See also

edit

Notes

edit
  1. ^ a b Grover, Lov K. (2025-08-07). "A fast quantum mechanical algorithm for database search". Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC '96. Philadelphia, Pennsylvania, USA: Association for Computing Machinery. pp. 212–219. arXiv:quant-ph/9605043. Bibcode:1996quant.ph..5043G. doi:10.1145/237814.237866. ISBN 978-0-89791-785-8. S2CID 207198067.
  2. ^ Bennett, C. H.; Bernstein, E.; Brassard, G.; Vazirani, U. (1997). "The strengths and weaknesses of quantum computation". SIAM Journal on Computing. 26 (5): 1510–1523. arXiv:quant-ph/9701001. doi:10.1137/s0097539796300933. S2CID 13403194.
  3. ^ a b c d Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum computation and quantum information. Cambridge: Cambridge University Press. pp. 276–305. ISBN 978-1-107-00217-3. OCLC 665137861.
  4. ^ Bernstein, Daniel J. (2010). "Grover vs. McEliece" (PDF). In Sendrier, Nicolas (ed.). Post-Quantum Cryptography, Third International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings. Lecture Notes in Computer Science. Vol. 6061. Springer. pp. 73–80. doi:10.1007/978-3-642-12929-2_6. ISBN 978-3-642-12928-5.
  5. ^ Grover, Lov K. (1998). "A framework for fast quantum mechanical algorithms". In Vitter, Jeffrey Scott (ed.). Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23–26, 1998. Association for Computing Machinery. pp. 53–62. arXiv:quant-ph/9711043. doi:10.1145/276698.276712. ISBN 0-89791-962-9.
  6. ^ a b Ambainis, A. (2025-08-07). "Quantum search algorithms". ACM SIGACT News. 35 (2): 22–35. arXiv:quant-ph/0504012. doi:10.1145/992287.992296. ISSN 0163-5700. S2CID 11326499.
  7. ^ Jordan, Stephen. "Quantum Algorithm Zoo". quantumalgorithmzoo.org. Retrieved 2025-08-07.
  8. ^ Cerf, Nicolas J.; Grover, Lov K.; Williams, Colin P. (2025-08-07). "Nested Quantum Search and NP-Hard Problems". Applicable Algebra in Engineering, Communication and Computing. 10 (4): 311–338. doi:10.1007/s002000050134. ISSN 1432-0622. S2CID 311132.
  9. ^ Ambainis, Andris (2025-08-07). "Quantum Walk Algorithm for Element Distinctness". SIAM Journal on Computing. 37 (1): 210–239. arXiv:quant-ph/0311001. doi:10.1137/S0097539705447311. ISSN 0097-5397. S2CID 6581885.
  10. ^ Brassard, Gilles; H?yer, Peter; Tapp, Alain (1998). "Quantum Cryptanalysis of Hash and Claw-Free Functions". In Lucchesi, Claudio L.; Moura, Arnaldo V. (eds.). LATIN '98: Theoretical Informatics, Third Latin American Symposium, Campinas, Brazil, April, 20-24, 1998, Proceedings. Lecture Notes in Computer Science. Vol. 1380. Springer. pp. 163–169. arXiv:quant-ph/9705002. doi:10.1007/BFb0054319. ISBN 978-3-540-64275-6.
  11. ^ Post-quantum cryptography. Daniel J. Bernstein, Johannes Buchmann, Erik, Dipl.-Math Dahmén. Berlin: Springer. 2009. ISBN 978-3-540-88702-7. OCLC 318545517.{{cite book}}: CS1 maint: others (link)
  12. ^ Bernstein, Daniel J. (2025-08-07). "Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete?" (PDF). Conference Proceedings for Special-purpose Hardware for Attacking Cryptographic Systems (SHARCS '09). 09: 105–117.
  13. ^ Viamontes G.F.; Markov I.L.; Hayes J.P. (2005), "Is Quantum Search Practical?" (PDF), Computing in Science and Engineering, 7 (3): 62–70, arXiv:quant-ph/0405001, Bibcode:2005CSE.....7c..62V, doi:10.1109/mcse.2005.53, S2CID 8929938
  14. ^ Sinitsyn N. A.; Yan B. (2023). "Topologically protected Grover's oracle for the partition problem". Physical Review A. 108 (2): 022412. arXiv:2304.10488. doi:10.1103/PhysRevA.108.022412. S2CID 258236417.
  15. ^ Babbush, Ryan; McClean, Jarrod R.; Newman, Michael; Gidney, Craig; Boixo, Sergio; Neven, Hartmut (2025-08-07). "Focus beyond Quadratic Speedups for Error-Corrected Quantum Advantage". PRX Quantum. 2 (1): 010103. arXiv:2011.04149. doi:10.1103/PRXQuantum.2.010103.
  16. ^ Aaronson, Scott (April 19, 2021). "Introduction to Quantum Information Science Lecture Notes" (PDF).
  17. ^ Nielsen-Chuang
  18. ^ a b Boyer, Michel; Brassard, Gilles; H?yer, Peter; Tapp, Alain (1998), "Tight Bounds on Quantum Searching", Fortschritte der Physik, 46 (4–5): 493–506, arXiv:quant-ph/9605034, Bibcode:1998ForPh..46..493B, doi:10.1002/3527603093.ch10, ISBN 9783527603091
  19. ^ Ambainis, Andris (2004), "Quantum search algorithms", SIGACT News, 35 (2): 22–35, arXiv:quant-ph/0504012, Bibcode:2005quant.ph..4012A, doi:10.1145/992287.992296, S2CID 11326499
  20. ^ Grover, L. K.; Radhakrishnan, J. (2025-08-07). "Is partial quantum search of a database any easier?". arXiv:quant-ph/0407122v4.
  21. ^ Zalka, Christof (2025-08-07). "Grover's quantum searching algorithm is optimal". Physical Review A. 60 (4): 2746–2751. arXiv:quant-ph/9711070. Bibcode:1999PhRvA..60.2746Z. doi:10.1103/PhysRevA.60.2746. S2CID 1542077.
  22. ^ Aaronson, Scott. "Quantum Computing and Hidden Variables" (PDF).

References

edit
edit
灵芝长在什么地方 免疫什么意思 省检察长什么级别 乌龟吃什么食物 感冒发烧挂什么科
口腔溃疡是什么原因造成的 出血线是什么意思 缩量是什么意思 心季吃什么药 盆腔炎是什么症状
臀推是什么意思 小孩有口臭是什么原因引起的 胃酸是什么症状 不老莓是什么 花生有什么营养
便秘是什么意思 睡觉总是流口水是什么原因 脊椎和脊柱有什么区别 槐树什么时候开花 瞽叟是什么意思
口干舌燥挂什么科hcv9jop6ns2r.cn 脂肪最终消化成什么hcv8jop4ns9r.cn 眼睛干涩是什么原因引起的hcv9jop6ns0r.cn 黑枸杞对男性性功能有什么帮助hcv9jop2ns7r.cn 从胃到小腹连着疼是什么原因hcv8jop1ns7r.cn
什么颜色招财并聚财hcv9jop0ns4r.cn 消融术是什么手术hcv7jop9ns9r.cn 非议是什么意思chuanglingweilai.com 骨关节疼痛什么原因hcv8jop9ns5r.cn 抖m是什么jingluanji.com
亮晶晶的什么填空hcv9jop5ns3r.cn 为什么怀不上孩子hcv8jop4ns1r.cn 喜欢吃冰的是什么原因hcv8jop8ns3r.cn 琥珀酱是什么味hcv9jop6ns0r.cn 安赛蜜是什么东西hcv9jop3ns1r.cn
我用什么留住你hcv9jop3ns4r.cn 偏左偏右是什么意思hcv8jop2ns9r.cn 牡丹花是什么颜色hcv8jop0ns6r.cn 女生腰疼是什么原因hcv8jop3ns5r.cn xo是什么意思hcv8jop3ns0r.cn
百度