方可以加什么偏旁| fhr是什么意思| 黑管是什么乐器| 芳心是什么意思| 肠癌吃什么| 阳历6月28日是什么星座| 满血复活是什么意思| 外阴苔癣是一种什么病| 海豹吃什么| 离婚需要带什么证件| 阿拉是什么意思| 牙齿酸软是什么原因| 金银花为什么叫忍冬| 甲亢什么症状| 三尖瓣关闭不全是什么意思| 滋阴补肾是什么意思| 点心是什么意思| 青筋明显是什么原因| 癫痫病是什么症状| 9月6日什么星座| 什么是败血症| 什么可以代替狗狗沐浴露| 自欺欺人是什么生肖| 专台号是什么意思| 苦荞茶喝了有什么好处| 钓鲤鱼用什么饵料| 沙僧的武器叫什么名字| 3月有什么节日| 外阴炎用什么药| ca医学上是什么意思| 人参适合什么人吃| 吗啡是什么| 甲沟炎有什么药| 心颤是什么症状| 文艺兵是干什么的| 女人安全期是什么时候| 不感冒什么意思| 亚麻籽油是什么油| 脑血栓前兆是什么症状表现| 花椒和麻椒有什么区别| 尿素偏高是什么意思| 今年的属相是什么生肖| 肚子疼吃什么药| 银子发黑是什么原因| 喉咙一直有痰是什么原因| 绿豆什么人不能吃| 地龙是什么动物| 肺不好的人吃什么好| 尿常规阳性是什么意思| msgm是什么品牌| 财神位放什么最旺财| 什么是低碳饮食| 为什么会生化| 混社会的人一般干什么| 1999年出生属什么生肖| 乳腺癌长在什么位置| 鹿角菜是什么植物| 什么的猫| 喜欢紫色的女人是什么性格| 血压低会导致什么后果| 黄猫来家里有什么预兆| 闰六月是什么意思| 贵气是什么意思| 三个目念什么| 24h是什么意思| 宫颈筛查hpv阳性是什么意思| 女人下巴有痣代表什么| 什么叫cta检查| 牛和什么生肖相冲| 美版苹果和国行有什么区别| 仰望是什么意思| 小囊性灶是什么意思| 2.3是什么星座| 阳萎早谢吃什么药最好| 脱发用什么药最好| 护理部主任是什么级别| 腮腺炎输液用什么药| mono是什么意思| 嘴唇发紫发黑是什么原因| 莲雾是什么水果| 西门子洗衣机不脱水是什么原因| 倒模是什么| 做包皮挂什么科| 老流口水是什么原因| 阑尾炎挂号挂什么科| 月经血块多是什么原因| 唐筛和无创有什么区别| 上嘴唇上有痣代表什么| 棕色配什么颜色| 玉米什么时候成熟| 什么的图案| 沙里瓦是什么意思| 女生的隐私长什么样子| 古人的婚礼在什么时候举行| 女性阴部潮湿是什么原因| 卡马西平片治什么病| 女生吃木瓜有什么好处| 大便常规检查能查出什么| 居住证签注是什么意思| 颈动脉斑块是什么意思| 睡觉吐气是什么原因| blackpink什么意思| 什么的拼音怎么写| 女同是什么| 增生性贫血是什么意思| pears是什么意思| 臭虫长什么样子图片| 小是什么生肖| 阴阳失调吃什么中成药| 外阴过敏用什么药| 加字五行属什么| 脑梗适合吃什么食物| 芒种可以种什么菜| 什么情况下容易怀孕| 浆细胞肿瘤是什么病| 会考是什么意思| 什么动物眼睛最大| 放疗是什么| 狸猫换太子什么意思| 年终奖一般什么时候发| 什么使我快乐| 蜘蛛的血是什么颜色的| 羟苯乙酯是什么东西| 磨人的小妖精是什么意思| 尿白细胞定量高是什么意思| 肚子绞痛吃什么药| 业已毕业是什么意思| 天上的云朵像什么| 脾虚湿重吃什么中成药| 掉筷子有什么预兆| 除氯是什么意思| 宫颈粘膜慢性炎是什么意思| 癔症是什么| 老人爱睡觉是什么原因| 推特是什么意思| 肾上腺增生是什么意思| 中国国酒是什么| hys是什么意思| 为什么一进去就想射| 什么水适合婴儿冲奶粉| 橙子什么季节成熟| 什么解酒快| 声音小是什么原因| 什么的白塔| 2000年是什么生肖| 师弟是什么意思| 肾结石发作有什么症状| aj和nike什么关系| pcr是什么| 夕颜是什么意思| cll是什么意思| 懿是什么意思| 什么瓜不能吃脑筋急转弯| 头面是什么| 骨化性肌炎是什么病| 瑞什么意思| 冬菜是什么菜| 太阳最后会变成什么| 遇见是什么意思| 十岁女孩喜欢什么礼物| 体脂率是什么意思| 每天吃鸡蛋有什么好处和坏处| 无眠是什么意思| 肺气泡是什么病| 培根是什么肉| 锦衣玉食什么意思| 为什么牙龈老是出血| 一个夸一个瓜念什么| 做一半就软了是什么原因| kv是什么单位| 1993年五行属什么| 紫藤花什么时候开| 细菌属于什么生物| 荨麻疹不能吃什么| 白色泡沫痰是什么原因| 梦见要账是什么意思| 斐字五行属什么| 汗毛长的女人代表什么| 肠痉挛是什么症状| 什么时间段买机票最便宜| 皮肤瘙痒用什么药好| 扁平足适合穿什么鞋| 痔疮是什么原因引起| 脚侧面骨头突出叫什么| 十天干代表什么| 脑梗输液用什么药| 沈腾和马丽是什么关系| 大饼脸适合什么发型| 病毒性咳嗽吃什么药好| 颈椎退行性病变是什么意思| 迟缓是什么意思| 缘木求鱼是什么意思| 怀孕有什么特征和反应| 什么叫做焦虑症| 亚麻是什么| 琼玖是什么意思| 功夫2什么时候上映| 少阳病是什么意思| 运动喝什么水补充能量| 井木犴是什么动物| 高泌乳素血症是什么原因引起的| 解构是什么意思| 奖励是什么意思| 酱油是什么做的| md是什么牌子| 江西什么最出名| 口干口苦吃什么药最好| 氨咖黄敏胶囊治什么| 脚掌心发热是什么原因| 摔纹皮是什么皮| 泌尿系统感染有什么症状| 仁字五行属什么| 时迁是什么意思| 垫背是什么意思| 单侧流鼻血是什么原因| 怀孕初期不能吃什么| 梦见摘杏子是什么意思| 道士是什么生肖| 主动脉硬化吃什么药好| 梦见小孩是什么| 孕妇应该多吃什么水果| 两个禾念什么| 林彪为什么要叛逃| 镜检是什么| 3a是什么| 塞来昔布是什么药| 代糖是什么东西| 骨转移是什么意思| mra是什么意思| 头昏脑胀吃什么药| 开除党籍有什么后果| 毛泽东是什么样的人| 脖子上有结节挂什么科| 老年阴道炎用什么药| miracle是什么意思| 食粉是什么粉| 惊悸的意思是什么| 血压有点低是什么原因| 看见乌鸦有什么预兆| 疝气是什么症状| 乙肝肝炎表面抗体阳性是什么意思| 克拉是什么意思| 济南有什么好吃的| 为什么阴道会排气| 带状疱疹看什么科| mfg什么意思| 男属兔和什么属相最配| 心口下面疼是什么原因| 世界最大的岛是什么岛| nk细胞是什么| 身正不怕影子斜是什么意思| 蜈蚣属于什么类动物| 随什么随什么| 砂舞是什么意思| vsop是什么酒| 麦芽糖是什么糖| 中暑头晕吃什么药| 食指中指交叉什么意思| 扎马步有什么好处| 此地无银三百两是什么意思| 愚孝什么意思| 幽闭恐惧症是什么症状| 讲师是什么级别| 泽泻是什么| 百度

独家:2017年4月13日明天周四大盘预测股市分析

百度 中国商务部任鸿斌司长在签约仪式致辞表示,中国和印度互为重要经贸合作伙伴,2017年两国贸易额达到844亿美元,创历史新高。

In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is satisfactory for geography, astronomy and many other purposes. Several models with greater accuracy (including ellipsoid) have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.

Motivation

edit

Earth's topographic surface is apparent with its variety of land forms and water areas. This topographic surface is generally the concern of topographers, hydrographers, and geophysicists. While it is the surface on which Earth measurements are made, mathematically modeling it while taking the irregularities into account would be extremely complicated.

The Pythagorean concept of a spherical Earth offers a simple surface that is easy to deal with mathematically. Many astronomical and navigational computations use a sphere to model the Earth as a close approximation. However, a more accurate figure is needed for measuring distances and areas on the scale beyond the purely local. Better approximations can be made by modeling the entire surface as an oblate spheroid, using spherical harmonics to approximate the geoid, or modeling a region with a best-fit reference ellipsoid.

For surveys of small areas, a planar (flat) model of Earth's surface suffices because the local topography overwhelms the curvature. Plane-table surveys are made for relatively small areas without considering the size and shape of the entire Earth. A survey of a city, for example, might be conducted this way.

 
Topographic view of Earth relative to Earth's center (instead of to mean sea level, as in common topographic maps)

By the late 1600s, serious effort was devoted to modeling the Earth as an ellipsoid, beginning with French astronomer Jean Picard's measurement of a degree of arc along the Paris meridian. Improved maps and better measurement of distances and areas of national territories motivated these early attempts. Surveying instrumentation and techniques improved over the ensuing centuries. Models for the figure of the Earth improved in step.

In the mid- to late 20th century, research across the geosciences contributed to drastic improvements in the accuracy of the figure of the Earth. The primary utility of this improved accuracy was to provide geographical and gravitational data for the inertial guidance systems of ballistic missiles. This funding also drove the expansion of geoscientific disciplines, fostering the creation and growth of various geoscience departments at many universities.[1] These developments benefited many civilian pursuits as well, such as weather and communication satellite control and GPS location-finding, which would be impossible without highly accurate models for the figure of the Earth.

Models

edit

The models for the figure of the Earth vary in the way they are used, in their complexity, and in the accuracy with which they represent the size and shape of the Earth.

Sphere

edit
 
A view across a 20-km-wide bay in the coast of Spain. The curvature of the Earth is evident in the horizon across the image, and the bases of the buildings on the far shore are below that horizon and hidden by the sea.

The simplest model for the shape of the entire Earth is a sphere. The Earth's radius is the distance from Earth's center to its surface, about 6,371 km (3,959 mi). While "radius" normally is a characteristic of perfect spheres, the Earth deviates from spherical by only a third of a percent, sufficiently close to treat it as a sphere in many contexts and justifying the term "the radius of the Earth".

The concept of a spherical Earth dates back to around the 6th century BC,[2] but remained a matter of philosophical speculation until the 3rd century BC. The first scientific estimation of the radius of the Earth was given by Eratosthenes about 240 BC, with estimates of the accuracy of Eratosthenes's measurement ranging from ?1% to 15%.

The Earth is only approximately spherical, so no single value serves as its natural radius. Distances from points on the surface to the center range from 6,353 km (3,948 mi) to 6,384 km (3,967 mi). Several different ways of modeling the Earth as a sphere each yield a mean radius of 6,371 km (3,959 mi). Regardless of the model, any radius falls between the polar minimum of about 6,357 km (3,950 mi) and the equatorial maximum of about 6,378 km (3,963 mi). The difference 21 km (13 mi) correspond to the polar radius being approximately 0.3% shorter than the equatorial radius.

Ellipsoid of revolution

edit
 
An oblate spheroid, highly exaggerated relative to the actual Earth
 
A scale diagram of the oblateness of the 2003 IERS reference ellipsoid, with north at the top. The outer edge of the dark blue line is an ellipse with the same eccentricity as that of Earth. For comparison, the light blue circle within has a diameter equal to the ellipse's minor axis. The red curve represents the Karman line 100 km (62 mi) above sea level, while the yellow band denotes the altitude range of the ISS in low Earth orbit.

As theorized by Isaac Newton and Christiaan Huygens,[3]:?4?[4][5] the Earth is flattened at the poles and bulged at the equator. Thus, geodesy represents the figure of the Earth as an oblate spheroid. The oblate spheroid, or oblate ellipsoid, is an ellipsoid of revolution obtained by rotating an ellipse about its shorter axis. It is the regular geometric shape that most nearly approximates the shape of the Earth. A spheroid describing the figure of the Earth or other celestial body is called a reference ellipsoid. The reference ellipsoid for Earth is called an Earth ellipsoid.

An ellipsoid of revolution is uniquely defined by two quantities. Several conventions for expressing the two quantities are used in geodesy, but they are all equivalent to and convertible with each other:

  • Equatorial radius   (called semimajor axis), and polar radius   (called semiminor axis);
  •   and eccentricity  ;
  •   and flattening  .

Eccentricity and flattening are different ways of expressing how squashed the ellipsoid is. When flattening appears as one of the defining quantities in geodesy, generally it is expressed by its reciprocal. For example, in the WGS 84 spheroid used by today's GPS systems, the reciprocal of the flattening   is set to be exactly 298.257223563.

The difference between a sphere and a reference ellipsoid for Earth is small, only about one part in 300. Historically, flattening was computed from grade measurements. Nowadays, geodetic networks and satellite geodesy are used. In practice, many reference ellipsoids have been developed over the centuries from different surveys. The flattening value varies slightly from one reference ellipsoid to another, reflecting local conditions and whether the reference ellipsoid is intended to model the entire Earth or only some portion of it.

A sphere has a single radius of curvature, which is simply the radius of the sphere. More complex surfaces have radii of curvature that vary over the surface. The radius of curvature describes the radius of the sphere that best approximates the surface at that point. Oblate ellipsoids have a constant radius of curvature east to west along parallels, if a graticule is drawn on the surface, but varying curvature in any other direction. For an oblate ellipsoid, the polar radius of curvature   is larger than the equatorial

 

because the pole is flattened: the flatter the surface, the larger the sphere must be to approximate it. Conversely, the ellipsoid's north–south radius of curvature at the equator   is smaller than the polar

 

where   is the distance from the center of the ellipsoid to the equator (semi-major axis), and   is the distance from the center to the pole. (semi-minor axis)

Non-spheroidal deviations

edit

Triaxiality (equatorial eccentricity)

edit

The possibility that the Earth's equator is better characterized as an ellipse rather than a circle and therefore that the ellipsoid is triaxial has been a matter of scientific inquiry for many years.[6][7] Modern technological developments have furnished new and rapid methods for data collection and, since the launch of Sputnik 1, orbital data have been used to investigate the theory of ellipticity.[3] More recent results indicate a 70 m difference between the two equatorial major and minor axes of inertia, with the larger semidiameter pointing to 15° W longitude (and also 180-degree away).[8][9]

Egg or pear shape

edit

Following work by Picard, Italian polymath Giovanni Domenico Cassini found that the length of a degree was apparently shorter north of Paris than to the south, implying the Earth to be egg-shaped.[3]:?4? In 1498, Christopher Columbus dubiously suggested that the Earth was pear-shaped based on his disparate mobile readings of the angle of the North Star, which he incorrectly interpreted as having varying diurnal motion.[10]

The theory of a slightly pear-shaped Earth arose when data was received from the U.S.'s artificial satellite Vanguard 1 in 1958. It was found to vary in its long periodic orbit, with the Southern Hemisphere exhibiting higher gravitational attraction than the Northern Hemisphere. This indicated a flattening at the South Pole and a bulge of the same degree at the North Pole, with the sea level increased about 9 m (30 ft) at the latter.[11][12][3]:?9? This theory implies the northern middle latitudes to be slightly flattened and the southern middle latitudes correspondingly bulged.[3]:?9? Potential factors involved in this aberration include tides and subcrustal motion (e.g. plate tectonics).[11][12]

John A. O'Keefe and co-authors are credited with the discovery that the Earth had a significant third degree zonal spherical harmonic in its gravitational field using Vanguard 1 satellite data.[13] Based on further satellite geodesy data, Desmond King-Hele refined the estimate to a 45 m (148 ft) difference between north and south polar radii, owing to a 19 m (62 ft) "stem" rising in the North Pole and a 26 m (85 ft) depression in the South Pole.[14][15] The polar asymmetry is about a thousand times smaller than the Earth's flattening and even smaller than its geoidal undulation in some regions.[16]

Geoid

edit
 
Map of the undulation of the geoid in meters (based on the EGM96 gravity model and the WGS84 reference ellipsoid).

Modern geodesy tends to retain the ellipsoid of revolution as a reference ellipsoid and treat triaxiality and pear shape as a part of the geoid figure: they are represented by the spherical harmonic coefficients   and  , respectively, corresponding to degree and order numbers 2.2 for the triaxiality and 3.0 for the pear shape.

It was stated earlier that measurements are made on the apparent or topographic surface of the Earth and it has just been explained that computations are performed on an ellipsoid. One other surface is involved in geodetic measurement: the geoid. In geodetic surveying, the computation of the geodetic coordinates of points is commonly performed on a reference ellipsoid closely approximating the size and shape of the Earth in the area of the survey. The actual measurements made on the surface of the Earth with certain instruments are however referred to the geoid. The ellipsoid is a mathematically defined regular surface with specific dimensions. The geoid, on the other hand, coincides with that surface to which the oceans would conform over the entire Earth if free to adjust to the combined effect of the Earth's mass attraction (gravitation) and the centrifugal force of the Earth's rotation. As a result of the uneven distribution of the Earth's mass, the geoidal surface is irregular and, since the ellipsoid is a regular surface, the separations between the two, referred to as geoid undulations, geoid heights, or geoid separations, will be irregular as well.

The geoid is a surface along which the gravity potential is equal everywhere and to which the direction of gravity is always perpendicular. The latter is particularly important because optical instruments containing gravity-reference leveling devices are commonly used to make geodetic measurements. When properly adjusted, the vertical axis of the instrument coincides with the direction of gravity and is, therefore, perpendicular to the geoid. The angle between the plumb line which is perpendicular to the geoid (sometimes called "the vertical") and the perpendicular to the ellipsoid (sometimes called "the ellipsoidal normal") is defined as the deflection of the vertical. It has two components: an east–west and a north–south component.[3]

Local approximations

edit

Simpler local approximations are possible.

Local tangent plane

edit
 
Local tangent plane.

The local tangent plane is appropriate for analysis across small distances.

Osculating sphere

edit
 
Ellipsoid and osculating sphere

The best local spherical approximation to the ellipsoid in the vicinity of a given point is the Earth's osculating sphere. Its radius equals Earth's Gaussian radius of curvature, and its radial direction coincides with the geodetic normal direction. The center of the osculating sphere is offset from the center of the ellipsoid, but is at the center of curvature for the given point on the ellipsoid surface. This concept aids the interpretation of terrestrial and planetary radio occultation refraction measurements and in some navigation and surveillance applications.[17][18]

Earth rotation and Earth's interior

edit

Determining the exact figure of the Earth is not only a geometric task of geodesy, but also has geophysical considerations. According to theoretical arguments by Newton, Leonhard Euler, and others, a body having a uniform density of 5,515 kg/m3 that rotates like the Earth should have a flattening of 1:229. This can be concluded without any information about the composition of Earth's interior.[19] However, the measured flattening is 1:298.25, which is closer to a sphere and a strong argument that Earth's core is extremely compact. Therefore, the density must be a function of the depth, ranging from 2,600 kg/m3 at the surface (rock density of granite, etc.), up to 13,000 kg/m3 within the inner core.[20]

Global and regional gravity field

edit

Also with implications for the physical exploration of the Earth's interior is the gravitational field, which is the net effect of gravitation (due to mass attraction) and centrifugal force (due to rotation). It can be measured very accurately at the surface and remotely by satellites. True vertical generally does not correspond to theoretical vertical (deflection ranges up to 50") because topography and all geological masses disturb the gravitational field. Therefore, the gross structure of the Earth's crust and mantle can be determined by geodetic-geophysical models of the subsurface.

See also

edit
History

References

edit
  1. ^ Cloud, John (2000). "Crossing the Olentangy River: The Figure of the Earth and the Military-Industrial-Academic Complex, 1947–1972". Studies in History and Philosophy of Modern Physics. 31 (3): 371–404. Bibcode:2000SHPMP..31..371C. doi:10.1016/S1355-2198(00)00017-4.
  2. ^ Dicks, D.R. (1970). Early Greek Astronomy to Aristotle. Ithaca, N.Y.: Cornell University Press. pp. 72–198. ISBN 978-0-8014-0561-7.
  3. ^ a b c d e f Defense Mapping Agency (1983). Geodesy for the Layman (Report) (4th ed.). United States Air Force.
  4. ^ Howse, Derek, ed. (1990). Background to Discovery: Pacific Exploration from Dampier to Cook. University of California Press. p. 91. ISBN 978-0-520-06208-5.
  5. ^ Choi, Charles Q. (12 April 2007). "Strange but True: Earth Is Not Round". Scientific American. Retrieved 2 March 2025.
  6. ^ Heiskanen, W. A. (1962). "Is the Earth a triaxial ellipsoid?". Journal of Geophysical Research. 67 (1): 321–327. Bibcode:1962JGR....67..321H. doi:10.1029/JZ067i001p00321.
  7. ^ Bur?a, Milan (1993). "Parameters of the Earth's tri-axial level ellipsoid". Studia Geophysica et Geodaetica. 37 (1): 1–13. Bibcode:1993StGG...37....1B. doi:10.1007/BF01613918. S2CID 128674427.
  8. ^ Torge & Müller (2012) Geodesy, De Gruyter, p.100
  9. ^ Marchenko, A.N. (2009): Current estimation of the Earth’s mechanical and geometrical para meters. In Sideris, M.G., ed. (2009): Observing our changing Earth. IAG Symp. Proceed. 133., pp. 473–481. DOI:10.1007/978-3-540-85426-5_57
  10. ^ Morison, Samuel Eliot (1991) [1942]. Admiral of the Ocean Sea: A Life of Christopher Columbus. Boston: Little, Brown and Company. p. 557. ISBN 978-0-316-58478-4. OCLC 1154365097.
  11. ^ a b Tyson, Neil deGrasse (2007). Death By Black Hole: And Other Cosmic Quandaries (1st ed.). New York: W. W. Norton. p. 61. ISBN 978-0-393-11378-5.
  12. ^ a b Hawkins, Gerald S. (1969) [1961]. Splendor in the Sky. New York: Harper & Row. p. 242.
  13. ^ O’Keefe, J. A., Eckeis, A., and Squires, R. K. (1959). "Vanguard Measurements Give Pear-Shaped Component of Earth’s Figure". Science, 129(3348), 565–566. doi:10.1126/science.129.3348.565.
  14. ^ King-Hele, D. G.; Cook, G. E. (1973). "Refining the Earth's Pear Shape". Nature. 246 (5428). Springer Nature: 86–88. Bibcode:1973Natur.246...86K. doi:10.1038/246086a0. ISSN 0028-0836. S2CID 4260099.
  15. ^ King-Hele, Desmond (1967). "The Shape of the Earth". Scientific American. 217 (4): 67–80. doi:10.1038/scientificamerican1067-67. JSTOR 24926147.
  16. ^ Günter Seeber (2008), Satellite Geodesy, Walter de Gruyter.
  17. ^ Williams, Paul; Last, David (3–7 November 2003). On Loran-C Time-Difference to Co-ordinate Converters (PDF). International Loran Association (ILA) – 32nd Annual Convention and Technical Symposium. Boulder, Colorado. CiteSeerX 10.1.1.594.6212.
  18. ^ Razin, Sheldon (Fall 1967). "Explicit (Noniterative) Loran Solution". Navigation: Journal of the Institute of Navigation. 14 (3): 265–269. doi:10.1002/j.2161-4296.1967.tb02208.x.
  19. ^ Heine, George (2013). "Euler and the Flattening of the Earth". Math Horizons. 21 (1). Mathematical Association of America: 25–29. doi:10.4169/mathhorizons.21.1.25. S2CID 126412032.
  20. ^ Dziewonski, A. M.; Anderson, D. L. (1981), "Preliminary reference Earth model" (PDF), Physics of the Earth and Planetary Interiors, 25 (4): 297–356, Bibcode:1981PEPI...25..297D, doi:10.1016/0031-9201(81)90046-7, ISSN 0031-9201
Attribution

  This article incorporates text from this source, which is in the public domain: Defense Mapping Agency (1983). Geodesy for the Layman (Report). United States Air Force.

Further reading

edit
edit
大力丸是什么 无花果什么时候种植 害怕什么 睾丸胀痛什么原因 计数单位是指什么
氢化植物油是什么 鱼眼睛吃了有什么好处 纳差是什么意思 暑假是什么时候放假 瞧不起是什么意思
血压低说明什么 男性一般检查什么 治疗荨麻疹用什么药最好 什么叫便秘 右位主动脉弓是什么意思
射手座属于什么象星座 儿童包皮过长挂什么科 核能是什么 三月十五是什么星座 为什么男怕属鸡
看正月初一是什么生肖gangsutong.com 灵媒是什么意思hcv8jop1ns0r.cn 羊水破了是什么感觉hcv8jop8ns1r.cn 小学生的学籍号是什么96micro.com 人几读什么wuhaiwuya.com
什么是电子邮件地址hcv9jop6ns0r.cn 女性胆固醇高吃什么好clwhiglsz.com 梦到孩子被蛇咬是什么意思hcv8jop4ns7r.cn 麒麟长什么样hcv9jop1ns2r.cn 陈皮泡水喝有什么功效hcv8jop3ns3r.cn
文联主席是什么级别hcv8jop4ns1r.cn 苹果醋有什么功效hcv7jop4ns7r.cn 260是什么意思hcv8jop3ns6r.cn 上校军衔是什么级别hcv9jop5ns4r.cn 早孕三项检查什么hcv8jop1ns1r.cn
考试前紧张吃什么药最好能缓解hlguo.com cd什么意思hcv7jop6ns6r.cn 10月13是什么星座hcv9jop3ns9r.cn 喝酒拉肚子是什么原因0297y7.com 30周做什么检查hcv9jop6ns1r.cn
百度