玄青色是什么颜色| 福星高照是什么生肖| 什么可以消肿快的方法| 手指长倒刺是什么原因| 淋巴结什么原因引起的| 坐支是什么意思| 物尽其用什么意思| 早上吃什么最有营养| 为什么医生不建议献血小板| 金主是什么意思| 阴道口瘙痒用什么药| 益精是什么意思| 大熊猫的尾巴是什么颜色| 血糖高适合吃什么主食| 泌尿系统感染挂什么科| 古惑仔为什么不拍了| 癸水的根是什么| 撸铁什么意思| 讨扰是什么意思| 倒挂对身体有什么好处| 北京摇号什么时候开始的| 投桃报李是什么生肖| 仰天长叹的意思是什么| 浠字五行属什么| 喘是什么原因造成的| 产后42天复查都检查什么| 生活的意义是什么| 乳腺增生结节吃什么药效果好| 2月20是什么星座| 乏力是什么意思| 男生一般什么时候停止长高| 阿莫西林什么时候吃| 吃什么能补钙| 产妇可以吃什么水果| 高原反应的原因是什么| 单核细胞百分比偏高是什么意思| 泞字五行属什么| 上号是什么意思| 尿潜血阳性是什么意思| 鸡蛋散黄是什么原因| 热敷肚子有什么好处| 什么原因引起脑梗| 三尖瓣反流是什么意思| 阉人什么意思| doneed是什么牌子| 子宫病变有什么症状| 三维彩超和四维彩超有什么区别| 胎儿生物物理评分8分什么意思| 属羊的是什么星座| 为什么喝完酒头疼| 中国的母亲河是什么河| 梦见狐狸是什么预兆| 银环蛇咬伤后什么症状| 什么样的伤口需要打破伤风| 为什么磨牙| 支气管舒张试验阳性是什么意思| 视黄醇是什么| 龟头有红点用什么药| 耳闷耳堵是什么原因引起的| 天妇罗是什么意思| 猴子偷桃是什么生肖| 京酱肉丝用什么肉| 比目鱼长什么样| 门对门风水有什么说法| 尿路感染看什么科室| 彩霞是什么意思| 15朵玫瑰花代表什么意思| 他叫什么名字| 心性是什么意思| 卵巢囊性结构是什么| 下午5点半是什么时辰| 早晨8点是什么时辰| 海兔是什么| 什么是多囊卵巢综合症| 郡肝是什么| 凡人修仙传什么时候写的| 飞行员妻子有什么待遇| 修面皮是什么皮| 尿道疼是什么原因| 材料化学属于什么类| 细菌性肺炎吃什么药| 右手无名指戴戒指代表什么| 不宜是什么意思| 鼻梁痛什么原因引起的| 现在有什么赚钱的路子| 婴儿眉毛上黄痂是什么| 渗透压是什么意思| 堃字的寓意是什么意思| 散粉和粉饼有什么区别| 烧心反酸水吃什么药| 屁多是什么原因| 铁蛋白低吃什么可以补| 舌头短是什么原因| 浅表性胃炎用什么药| 嘴唇舌头发麻什么病兆| 1978年出生是什么命| 祛斑去医院挂什么科| 肤色暗黄适合穿什么颜色的衣服| 打胎药叫什么| 猫吃什么| 每天都做梦是什么原因| 乳酸杆菌是什么| 卵巢早衰吃什么药| berries什么意思| 7月23日是什么日子| 错综复杂是什么意思| 小猫发烧有什么症状| 胃上火有什么症状| 血容量不足是什么意思| 什么样的男人不能嫁| 尿妊娠试验是检查什么| 胰腺钙化灶是什么意思| 什么是重力| 敏是什么意思| crh是什么意思| 牙齿黄是什么原因造成的| 愚痴是什么意思| 无创什么时候出结果| 芦荟有什么好处| 尚可什么意思| 吃什么对牙齿好| 虾仁不能和什么食物一起吃| 艾条什么牌子好用| 减肥晚餐吃什么| 挽尊什么意思| 潜能什么意思| 什么的骏马| 骨折补钙吃什么钙片好| 妹控是什么意思| 小姑独处是什么意思| 梅子和杏有什么区别| 清洁度lv是什么意思| 梦见钓鱼是什么意思周公解梦| 什么是烤瓷牙| 左脸长痘是什么原因| 肚子经常胀气是什么原因| 虾不能和什么东西一起吃| 狗头什么意思| 医生说忌辛辣是指什么| 龟头敏感用什么药| 手术后可以吃什么水果| 孕妇便秘吃什么水果| 望穿秋水是什么意思| 坦诚相待是什么意思| 左侧卵巢多囊样改变什么意思| 精神心理科主要治疗什么疾病| 鸟加一笔是什么字| ba是什么| 什么叫甲状腺弥漫病变| 梦见黑棺材是什么征兆| 人乳头瘤病毒18型阳性是什么意思| 贝尔发明了什么东西| 英纳格手表什么档次| 但求无愧于心上句是什么| 为什么老是做梦| 什么蛇没有毒| 美平是什么药| 东莞有什么好玩的地方| 猪八戒的武器叫什么| 蒲公英有什么功效和作用| 去草原穿什么衣服拍照好看| 子宫糜烂是什么症状| 什么是数字货币| 什么的生活| 脑血管堵塞吃什么药| doneed是什么牌子| 头孢主要治什么病| 带状疱疹吃什么药| 饭后打嗝是什么原因| 舌苔发黄是什么原因引起的| 黄芪不适合什么人吃| 什么是阴蒂| 因数是什么意思| 花名是什么意思| 鼻子肿了又硬又疼是什么原因| 等边三角形又叫什么三角形| hcg值低是什么原因| dr是什么意思| 黄昏是什么时候| 三个又读什么| 卵巢分泌什么激素| 细胞学检查是什么| 药流是吃什么药| 拉肚子可以吃什么食物| 扫兴是什么意思| 喝太多水对身体有什么影响| 为什么血压低| 医学ac是什么意思| 嘴唇干裂是什么原因| 胆囊结石需要注意什么| 空指什么生肖| 虎的贵人是什么生肖| 怀孕肚子痒是什么原因| unny是什么牌子| 阴茎硬度不够吃什么好| 玉树临风是什么生肖| 40岁男人学什么乐器好| 拟物是什么意思| 差强人意是什么意思| 嚣张是什么意思| 为什么8到10周容易胎停| 上司是什么意思| 腰椎挂什么科| 脊椎侧弯挂什么科| 梦见生孩子是什么意思| 来月经期间吃什么最好| 什么心什么胆| 夏枯草长什么样子| 鼻血止不住是什么原因| 布加综合征是什么病| 御守是什么意思| 感冒有什么症状| 自缢痣是什么意思| 痛风吃什么食物好| 无穷是什么意思| 纵容是什么意思| 新西兰移民需要什么条件| 眼前发黑是什么原因| 紫丁香什么时候开花| 真菌菌丝阳性什么意思| 什么叫蜘蛛痣| ab和b型血生的孩子是什么血型| 喝酒对身体有什么危害| 镪水池是什么| 蜂蜜什么人不能吃| 甘肃是什么省| 冷面是用什么面做的| 吃激素有什么副作用| 口腔溃疡什么症状| 韭菜苔炒什么好吃| 十月一是什么星座| 风寒感冒流鼻涕吃什么药| 回光返照什么意思| 讨喜是什么意思| k代表什么意思| 溜达鸡是什么意思| 尿液里白细胞高是什么原因| 甲状腺结节挂什么科室| 白矾是什么东西| 乔丹是什么品牌| 机关单位和事业单位有什么区别| 2月出生是什么星座| 爱屋及乌是什么意思| dpa是什么意思| 身上长白斑是什么原因造成的| 喝蜂蜜水有什么好处和坏处| 男生爱出汗是什么原因| 血常规查的是什么项目| joy什么意思| 什么地眨眼| 为什么一紧张就拉肚子| 雀子是什么意思| 舍友什么意思| 孕妇拉的屎是黑色的是因为什么| 搬新家有什么讲究和准备的| 梦见很多坟墓是什么意思| 什么的图案| 孩子肚子有虫子有什么症状| 发冷发热是什么原因| 什么什么的阳光| 脸发红是什么原因| 中午十一点是什么时辰| 侍寝是什么意思| 丁香泡水喝有什么功效和作用| 百度

咸阳市广播电视台手机客户端“看咸阳”上线仪式

百度 随后,乔治和安东尼先后出手命中三分,雷霆夺回优势以87-82领先。

Evolutionary algorithms (EA) reproduce essential elements of biological evolution in a computer algorithm in order to solve "difficult" problems, at least approximately, for which no exact or satisfactory solution methods are known. They are metaheuristics and population-based bio-inspired algorithms[1] and evolutionary computation, which itself are part of the field of computational intelligence.[2] The mechanisms of biological evolution that an EA mainly imitates are reproduction, mutation, recombination and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions (see also loss function). Evolution of the population then takes place after the repeated application of the above operators.

Evolutionary algorithms often perform well approximating solutions to all types of problems because they ideally do not make any assumption about the underlying fitness landscape. Techniques from evolutionary algorithms applied to the modeling of biological evolution are generally limited to explorations of microevolution (microevolutionary processes) and planning models based upon cellular processes. In most real applications of EAs, computational complexity is a prohibiting factor.[3] In fact, this computational complexity is due to fitness function evaluation. Fitness approximation is one of the solutions to overcome this difficulty. However, seemingly simple EA can solve often complex problems;[4][5][6] therefore, there may be no direct link between algorithm complexity and problem complexity.

Generic definition

edit

The following is an example of a generic evolutionary algorithm:[7][8][9]

  1. Randomly generate the initial population of individuals, the first generation.
  2. Evaluate the fitness of each individual in the population.
  3. Check, if the goal is reached and the algorithm can be terminated.
  4. Select individuals as parents, preferably of higher fitness.
  5. Produce offspring with optional crossover (mimicking reproduction).
  6. Apply mutation operations on the offspring.
  7. Select individuals preferably of lower fitness for replacement with new individuals (mimicking natural selection).
  8. Return to 2

Types

edit

Similar techniques differ in genetic representation and other implementation details, and the nature of the particular applied problem.

  • Genetic algorithm – This is the most popular type of EA. One seeks the solution of a problem in the form of strings of numbers (traditionally binary, although the best representations are usually those that reflect something about the problem being solved),[3] by applying operators such as recombination and mutation (sometimes one, sometimes both). This type of EA is often used in optimization problems.
  • Genetic programming – Here the solutions are in the form of computer programs, and their fitness is determined by their ability to solve a computational problem. There are many variants of Genetic Programming:
  • Evolutionary programming – Similar to evolution strategy, but with a deterministic selection of all parents.
  • Evolution strategy (ES) – Works with vectors of real numbers as representations of solutions, and typically uses self-adaptive mutation rates. The method is mainly used for numerical optimization, although there are also variants for combinatorial tasks.[10][11][12]
  • Differential evolution – Based on vector differences and is therefore primarily suited for numerical optimization problems.
  • Coevolutionary algorithm – Similar to genetic algorithms and evolution strategies, but the created solutions are compared on the basis of their outcomes from interactions with other solutions. Solutions can either compete or cooperate during the search process. Coevolutionary algorithms are often used in scenarios where the fitness landscape is dynamic, complex, or involves competitive interactions.[13][14]
  • Neuroevolution – Similar to genetic programming but the genomes represent artificial neural networks by describing structure and connection weights. The genome encoding can be direct or indirect.
  • Learning classifier system – Here the solution is a set of classifiers (rules or conditions). A Michigan-LCS evolves at the level of individual classifiers whereas a Pittsburgh-LCS uses populations of classifier-sets. Initially, classifiers were only binary, but now include real, neural net, or S-expression types. Fitness is typically determined with either a strength or accuracy based reinforcement learning or supervised learning approach.
  • Quality–Diversity algorithms – QD algorithms simultaneously aim for high-quality and diverse solutions. Unlike traditional optimization algorithms that solely focus on finding the best solution to a problem, QD algorithms explore a wide variety of solutions across a problem space and keep those that are not just high performing, but also diverse and unique.[15][16][17]

Theoretical background

edit

The following theoretical principles apply to all or almost all EAs.

No free lunch theorem

edit

The no free lunch theorem of optimization states that all optimization strategies are equally effective when the set of all optimization problems is considered. Under the same condition, no evolutionary algorithm is fundamentally better than another. This can only be the case if the set of all problems is restricted. This is exactly what is inevitably done in practice. Therefore, to improve an EA, it must exploit problem knowledge in some form (e.g. by choosing a certain mutation strength or a problem-adapted coding). Thus, if two EAs are compared, this constraint is implied. In addition, an EA can use problem specific knowledge by, for example, not randomly generating the entire start population, but creating some individuals through heuristics or other procedures.[18][19] Another possibility to tailor an EA to a given problem domain is to involve suitable heuristics, local search procedures or other problem-related procedures in the process of generating the offspring. This form of extension of an EA is also known as a memetic algorithm. Both extensions play a major role in practical applications, as they can speed up the search process and make it more robust.[18][20]

Convergence

edit

For EAs in which, in addition to the offspring, at least the best individual of the parent generation is used to form the subsequent generation (so-called elitist EAs), there is a general proof of convergence under the condition that an optimum exists. Without loss of generality, a maximum search is assumed for the proof:

From the property of elitist offspring acceptance and the existence of the optimum it follows that per generation   an improvement of the fitness   of the respective best individual   will occur with a probability  . Thus:

 

I.e., the fitness values represent a monotonically non-decreasing sequence, which is bounded due to the existence of the optimum. From this follows the convergence of the sequence against the optimum.

Since the proof makes no statement about the speed of convergence, it is of little help in practical applications of EAs. But it does justify the recommendation to use elitist EAs. However, when using the usual panmictic population model, elitist EAs tend to converge prematurely more than non-elitist ones.[21] In a panmictic population model, mate selection (see step 4 of the generic definition) is such that every individual in the entire population is eligible as a mate. In non-panmictic populations, selection is suitably restricted, so that the dispersal speed of better individuals is reduced compared to panmictic ones. Thus, the general risk of premature convergence of elitist EAs can be significantly reduced by suitable population models that restrict mate selection.[22][23]

Virtual alphabets

edit

With the theory of virtual alphabets, David E. Goldberg showed in 1990 that by using a representation with real numbers, an EA that uses classical recombination operators (e.g. uniform or n-point crossover) cannot reach certain areas of the search space, in contrast to a coding with binary numbers.[24] This results in the recommendation for EAs with real representation to use arithmetic operators for recombination (e.g. arithmetic mean or intermediate recombination). With suitable operators, real-valued representations are more effective than binary ones, contrary to earlier opinion.[25][26]

Comparison to other concepts

edit

Biological processes

edit

A possible limitation[according to whom?] of many evolutionary algorithms is their lack of a clear genotype–phenotype distinction. In nature, the fertilized egg cell undergoes a complex process known as embryogenesis to become a mature phenotype. This indirect encoding is believed to make the genetic search more robust (i.e. reduce the probability of fatal mutations), and also may improve the evolvability of the organism.[27][28] Such indirect (also known as generative or developmental) encodings also enable evolution to exploit the regularity in the environment.[29] Recent work in the field of artificial embryogeny, or artificial developmental systems, seeks to address these concerns. And gene expression programming successfully explores a genotype–phenotype system, where the genotype consists of linear multigenic chromosomes of fixed length and the phenotype consists of multiple expression trees or computer programs of different sizes and shapes.[30][improper synthesis?]

Monte-Carlo methods

edit

Both method classes have in common that their individual search steps are determined by chance. The main difference, however, is that EAs, like many other metaheuristics, learn from past search steps and incorporate this experience into the execution of the next search steps in a method-specific form. With EAs, this is done firstly through the fitness-based selection operators for partner choice and the formation of the next generation. And secondly, in the type of search steps: In EA, they start from a current solution and change it or they mix the information of two solutions. In contrast, when dicing out new solutions in Monte-Carlo methods, there is usually no connection to existing solutions.[31][32]

If, on the other hand, the search space of a task is such that there is nothing to learn, Monte-Carlo methods are an appropriate tool, as they do not contain any algorithmic overhead that attempts to draw suitable conclusions from the previous search. An example of such tasks is the proverbial search for a needle in a haystack, e.g. in the form of a flat (hyper)plane with a single narrow peak.

Applications

edit

The areas in which evolutionary algorithms are practically used are almost unlimited[6] and range from industry,[33][34] engineering,[3][4][35] complex scheduling,[5][36][37] agriculture,[38] robot movement planning[39] and finance[40][41] to research[42][43] and art. The application of an evolutionary algorithm requires some rethinking from the inexperienced user, as the approach to a task using an EA is different from conventional exact methods and this is usually not part of the curriculum of engineers or other disciplines. For example, the fitness calculation must not only formulate the goal but also support the evolutionary search process towards it, e.g. by rewarding improvements that do not yet lead to a better evaluation of the original quality criteria. For example, if peak utilisation of resources such as personnel deployment or energy consumption is to be avoided in a scheduling task, it is not sufficient to assess the maximum utilisation. Rather, the number and duration of exceedances of a still acceptable level should also be recorded in order to reward reductions below the actual maximum peak value.[44] There are therefore some publications that are aimed at the beginner and want to help avoiding beginner's mistakes as well as leading an application project to success.[44][45][46] This includes clarifying the fundamental question of when an EA should be used to solve a problem and when it is better not to.

edit

There are some other proven and widely used methods of nature inspired global search techniques such as

In addition, many new nature-inspired or metaphor-guided algorithms have been proposed since the beginning of this century[when?]. For criticism of most publications on these, see the remarks at the end of the introduction to the article on metaheuristics.

Examples

edit

In 2020, Google stated that their AutoML-Zero can successfully rediscover classic algorithms such as the concept of neural networks.[47]

The computer simulations Tierra and Avida attempt to model macroevolutionary dynamics.

edit

[48][49]

References

edit
  1. ^ Farinati, Davide; Vanneschi, Leonardo (December 2024). "A survey on dynamic populations in bio-inspired algorithms". Genetic Programming and Evolvable Machines. 25 (2) 19. doi:10.1007/s10710-024-09492-4. hdl:10362/170138.
  2. ^ Vikhar, P. A. (2016). "Evolutionary algorithms: A critical review and its future prospects". 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC). Jalgaon. pp. 261–265. doi:10.1109/ICGTSPICC.2016.7955308. ISBN 978-1-5090-0467-6. S2CID 22100336.{{cite book}}: CS1 maint: location missing publisher (link)
  3. ^ a b c Cohoon, J. P.; Karro, J.; Lienig, J. (2003). "Evolutionary Algorithms for the Physical Design of VLSI Circuits" in Advances in Evolutionary Computing: Theory and Applications (PDF). London: Springer Verlag. pp. 683–712. ISBN 978-3-540-43330-9.
  4. ^ a b Slowik, Adam; Kwasnicka, Halina (2020). "Evolutionary algorithms and their applications to engineering problems". Neural Computing and Applications. 32 (16): 12363–12379. doi:10.1007/s00521-020-04832-8. ISSN 0941-0643. S2CID 212732659.
  5. ^ a b Mika, Marek; Waligóra, Grzegorz; W?glarz, Jan (2011). "Modelling and solving grid resource allocation problem with network resources for workflow applications". Journal of Scheduling. 14 (3): 291–306. doi:10.1007/s10951-009-0158-0. ISSN 1094-6136. S2CID 31859338.
  6. ^ a b "International Conference on the Applications of Evolutionary Computation". The conference is part of the Evo* series. The conference proceedings are published by Springer. Retrieved 2025-08-07.
  7. ^ Jansen, Thomas; Weyland, Dennis (7 July 2007). "Analysis of evolutionary algorithms for the longest common subsequence problem". Proceedings of the 9th annual conference on Genetic and evolutionary computation. Association for Computing Machinery. pp. 939–946. doi:10.1145/1276958.1277148. ISBN 978-1-59593-697-4.
  8. ^ Jin, Yaochu (2003). "Evolutionary Algorithms". Advanced Fuzzy Systems Design and Applications. Studies in Fuzziness and Soft Computing. Vol. 112. Physica-Verlag HD. pp. 49–71. doi:10.1007/978-3-7908-1771-3_2. ISBN 978-3-7908-2520-6.
  9. ^ Tavares, Jorge; Machado, Penousal; Cardoso, Amílcar; Pereira, Francisco B.; Costa, Ernesto (2004). "On the Evolution of Evolutionary Algorithms". Genetic Programming. Lecture Notes in Computer Science. Vol. 3003. Springer. pp. 389–398. doi:10.1007/978-3-540-24650-3_37. ISBN 978-3-540-21346-8.
  10. ^ Nissen, Volker; Krause, Matthias (1994), "Constrained Combinatorial Optimization with an Evolution Strategy", in Reusch, Bernd (ed.), Fuzzy Logik, Informatik aktuell, Berlin, Heidelberg: Springer, pp. 33–40, doi:10.1007/978-3-642-79386-8_5, ISBN 978-3-642-79386-8
  11. ^ Coelho, V. N.; Coelho, I. M.; Souza, M. J. F.; Oliveira, T. A.; Cota, L. P.; Haddad, M. N.; Mladenovic, N.; Silva, R. C. P.; Guimar?es, F. G. (2016). "Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems". Evol Comput. 24 (4): 637–666. doi:10.1162/EVCO_a_00187. PMID 27258842. S2CID 13582781.
  12. ^ Slowik, Adam; Kwasnicka, Halina (1 August 2020). "Evolutionary algorithms and their applications to engineering problems". Neural Computing and Applications. 32 (16): 12363–12379. doi:10.1007/s00521-020-04832-8. ISSN 1433-3058.
  13. ^ Ma, Xiaoliang; Li, Xiaodong; Zhang, Qingfu; Tang, Ke; Liang, Zhengping; Xie, Weixin; Zhu, Zexuan (2019), "A Survey on Cooperative Co-Evolutionary Algorithms.", IEEE Transactions on Evolutionary Computation, 23 (3): 421–441, Bibcode:2019ITEC...23..421M, doi:10.1109/TEVC.2018.2868770, S2CID 125149900
  14. ^ Popovici, Elena; Bucci, Anthony; Wiegand, R. Paul; De Jong, Edwin D. (2012). "Coevolutionary Principles". In Rozenberg, Grzegorz; B?ck, Thomas; Kok, Joost N. (eds.). Handbook of Natural Computing. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 987–1033. doi:10.1007/978-3-540-92910-9_31. ISBN 978-3-540-92910-9.
  15. ^ Pugh, Justin K.; Soros, Lisa B.; Stanley, Kenneth O. (2025-08-07). "Quality Diversity: A New Frontier for Evolutionary Computation". Frontiers in Robotics and AI. 3. doi:10.3389/frobt.2016.00040. ISSN 2296-9144.
  16. ^ Lehman, Joel; Stanley, Kenneth O. (2025-08-07). "Evolving a diversity of virtual creatures through novelty search and local competition". Proceedings of the 13th annual conference on Genetic and evolutionary computation. New York, NY, USA: ACM. pp. 211–218. doi:10.1145/2001576.2001606. ISBN 9781450305570. S2CID 17338175.
  17. ^ Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste (2025-08-07). "Robots that can adapt like animals". Nature. 521 (7553): 503–507. arXiv:1407.3501. Bibcode:2015Natur.521..503C. doi:10.1038/nature14422. ISSN 0028-0836. PMID 26017452. S2CID 3467239.
  18. ^ a b Davis, Lawrence (1991). Handbook of genetic algorithms. New York: Van Nostrand Reinhold. ISBN 0-442-00173-8. OCLC 23081440.
  19. ^ Lienig, Jens; Brandt, Holger (1994), Davidor, Yuval; Schwefel, Hans-Paul; M?nner, Reinhard (eds.), "An evolutionary algorithm for the routing of multi-chip modules", Parallel Problem Solving from Nature — PPSN III, vol. 866, Berlin, Heidelberg: Springer, pp. 588–597, doi:10.1007/3-540-58484-6_301, ISBN 978-3-540-58484-1, retrieved 2025-08-07
  20. ^ Neri, Ferrante; Cotta, Carlos; Moscato, Pablo, eds. (2012). Handbook of Memetic Algorithms. Studies in Computational Intelligence. Vol. 379. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-23247-3. ISBN 978-3-642-23246-6.
  21. ^ Leung, Yee; Gao, Yong; Xu, Zong-Ben (1997). "Degree of population diversity - a perspective on premature convergence in genetic algorithms and its Markov chain analysis". IEEE Transactions on Neural Networks. 8 (5): 1165–1176. doi:10.1109/72.623217. ISSN 1045-9227. PMID 18255718.
  22. ^ Gorges-Schleuter, Martina (1998), Eiben, Agoston E.; B?ck, Thomas; Schoenauer, Marc; Schwefel, Hans-Paul (eds.), "A comparative study of global and local selection in evolution strategies", Parallel Problem Solving from Nature — PPSN V, Lecture Notes in Computer Science, vol. 1498, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 367–377, doi:10.1007/bfb0056879, ISBN 978-3-540-65078-2, retrieved 2025-08-07
  23. ^ Dorronsoro, Bernabe; Alba, Enrique (2008). Cellular Genetic Algorithms. Operations Research/Computer Science Interfaces Series. Vol. 42. Boston, MA: Springer US. doi:10.1007/978-0-387-77610-1. ISBN 978-0-387-77609-5.
  24. ^ Goldberg, David E. (1990), Schwefel, Hans-Paul; M?nner, Reinhard (eds.), "The theory of virtual alphabets", Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 496, Berlin/Heidelberg: Springer-Verlag (published 1991), pp. 13–22, doi:10.1007/bfb0029726, ISBN 978-3-540-54148-6, retrieved 2025-08-07
  25. ^ Stender, J.; Hillebrand, E.; Kingdon, J. (1994). Genetic algorithms in optimisation, simulation, and modelling. Amsterdam: IOS Press. ISBN 90-5199-180-0. OCLC 47216370.
  26. ^ Michalewicz, Zbigniew (1996). Genetic Algorithms + Data Structures = Evolution Programs (3rd ed.). Berlin Heidelberg: Springer. ISBN 978-3-662-03315-9. OCLC 851375253.
  27. ^ G.S. Hornby and J.B. Pollack. "Creating high-level components with a generative representation for body-brain evolution". Artificial Life, 8(3):223–246, 2002.
  28. ^ Jeff Clune, Benjamin Beckmann, Charles Ofria, and Robert Pennock. "Evolving Coordinated Quadruped Gaits with the HyperNEAT Generative Encoding" Archived 2025-08-07 at the Wayback Machine. Proceedings of the IEEE Congress on Evolutionary Computing Special Section on Evolutionary Robotics, 2009. Trondheim, Norway.
  29. ^ J. Clune, C. Ofria, and R. T. Pennock, "How a generative encoding fares as problem-regularity decreases", in PPSN (G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, and N. Beume, eds.), vol. 5199 of Lecture Notes in Computer Science, pp. 358–367, Springer, 2008.
  30. ^ Ferreira, C., 2001. "Gene Expression Programming: A New Adaptive Algorithm for Solving Problems". Complex Systems, Vol. 13, issue 2: 87–129.
  31. ^ Schwefel, Hans-Paul (1995). Evolution and Optimum Seeking. Sixth-generation computer technology series. New York: Wiley. p. 109. ISBN 978-0-471-57148-3.
  32. ^ Fogel, David B.; B?ck, Thomas; Michalewicz, Zbigniew, eds. (2000). Evolutionary Computation 1. Bristol ; Philadelphia: Institute of Physics Publishing. pp. xxx and xxxvii (Glossary). ISBN 978-0-7503-0664-5. OCLC 44807816.
  33. ^ Sanchez, Ernesto; Squillero, Giovanni; Tonda, Alberto (2012). Industrial Applications of Evolutionary Algorithms. Intelligent Systems Reference Library. Vol. 34. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-27467-1. ISBN 978-3-642-27466-4.
  34. ^ Miettinen, Kaisa; Neittaanm?ki, Pekka; M?kel?, M. M.; Périaux, Jacques, eds. (1999). Evolutionary algorithms in engineering and computer science : recent advances in genetic algorithms, evolution strategies, evolutionary programming, genetic programming, and industrial applications. Chichester: Wiley and Sons. ISBN 0-585-29445-3. OCLC 45728460.
  35. ^ Gen, Mitsuo; Cheng, Runwei (2025-08-07). Genetic Algorithms and Engineering Optimization. Wiley Series in Engineering Design and Automation. Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:10.1002/9780470172261. ISBN 978-0-470-17226-1.
  36. ^ Dahal, Keshav P.; Tan, Kay Chen; Cowling, Peter I. (2007). Evolutionary scheduling. Berlin: Springer. doi:10.1007/978-3-540-48584-1. ISBN 978-3-540-48584-1. OCLC 184984689.
  37. ^ Jakob, Wilfried; Strack, Sylvia; Quinte, Alexander; Bengel, Günther; Stucky, Karl-Uwe; Sü?, Wolfgang (2025-08-07). "Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing". Algorithms. 6 (2): 245–277. doi:10.3390/a6020245. ISSN 1999-4893.
  38. ^ Mayer, David G. (2002). Evolutionary Algorithms and Agricultural Systems. Boston, MA: Springer US. doi:10.1007/978-1-4615-1717-7. ISBN 978-1-4613-5693-6.
  39. ^ Blume, Christian (2000), Cagnoni, Stefano (ed.), "Optimized Collision Free Robot Move Statement Generation by the Evolutionary Software GLEAM", Real-World Applications of Evolutionary Computing, LNCS 1803, vol. 1803, Berlin, Heidelberg: Springer, pp. 330–341, doi:10.1007/3-540-45561-2_32, ISBN 978-3-540-67353-8, retrieved 2025-08-07
  40. ^ Aranha, Claus; Iba, Hitoshi (2008), Wobcke, Wayne; Zhang, Mengjie (eds.), "Application of a Memetic Algorithm to the Portfolio Optimization Problem", AI 2008: Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 5360, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 512–521, doi:10.1007/978-3-540-89378-3_52, ISBN 978-3-540-89377-6, retrieved 2025-08-07
  41. ^ Chen, Shu-Heng, ed. (2002). Evolutionary Computation in Economics and Finance. Studies in Fuzziness and Soft Computing. Vol. 100. Heidelberg: Physica-Verlag HD. doi:10.1007/978-3-7908-1784-3. ISBN 978-3-7908-2512-1.
  42. ^ Lohn, J.D.; Linden, D.S.; Hornby, G.S.; Kraus, W.F. (June 2004). "Evolutionary design of an X-band antenna for NASA's Space Technology 5 mission". IEEE Antennas and Propagation Society Symposium, 2004. Vol. 3. pp. 2313–2316 Vol.3. doi:10.1109/APS.2004.1331834. hdl:2060/20030067398. ISBN 0-7803-8302-8.
  43. ^ Fogel, Gary; Corne, David (2003). Evolutionary Computation in Bioinformatics. Elsevier. doi:10.1016/b978-1-55860-797-2.x5000-8. ISBN 978-1-55860-797-2.
  44. ^ a b Jakob, Wilfried (2021), Applying Evolutionary Algorithms Successfully - A Guide Gained from Realworld Applications, KIT Scientific Working Papers, vol. 170, Karlsruhe, FRG: KIT Scientific Publishing, arXiv:2107.11300, doi:10.5445/IR/1000135763, S2CID 236318422, retrieved 2025-08-07
  45. ^ Whitley, Darrell (2001). "An overview of evolutionary algorithms: practical issues and common pitfalls". Information and Software Technology. 43 (14): 817–831. doi:10.1016/S0950-5849(01)00188-4. S2CID 18637958.
  46. ^ Eiben, A.E.; Smith, J.E. (2015). "Working with Evolutionary Algorithms". Introduction to Evolutionary Computing. Natural Computing Series (2nd ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 147–163. doi:10.1007/978-3-662-44874-8. ISBN 978-3-662-44873-1. S2CID 20912932.
  47. ^ Gent, Edd (13 April 2020). "Artificial intelligence is evolving all by itself". Science | AAAS. Archived from the original on 16 April 2020. Retrieved 16 April 2020.
  48. ^ Simionescu, P.A.; Dozier, G.V.; Wainwright, R.L. (2006). "A Two-Population Evolutionary Algorithm for Constrained Optimization Problems" (PDF). 2006 IEEE International Conference on Evolutionary Computation. Proc 2006 IEEE International Conference on Evolutionary Computation. Vancouver, Canada. pp. 1647–1653. doi:10.1109/CEC.2006.1688506. ISBN 0-7803-9487-9. S2CID 1717817. Retrieved 7 January 2017.{{cite book}}: CS1 maint: location missing publisher (link)
  49. ^ Simionescu, P.A. (2014). Computer Aided Graphing and Simulation Tools for AutoCAD Users (1st ed.). Boca Raton, FL: CRC Press. ISBN 978-1-4822-5290-3.

Bibliography

edit
edit
中度肠化是什么意思 面部脂溢性皮炎用什么药 6月23日是什么节日 核医学科主要治什么病 紫米是什么米
吐白沫是什么原因 精子成活率低吃什么药 吃什么长胖 绣眼鸟吃什么 尿检是检查什么的
泌尿感染是什么症状 女人得性疾病什么症状 消化腺包括什么 什么地游泳 宝宝dha什么时候吃最好
仲夏是什么时候 麻药过敏什么症状 虾仁炒什么 肯德基为什么叫kfc 孤僻的人给人什么感觉
高丽参有什么功效onlinewuye.com 听诊器能听出什么hcv9jop4ns0r.cn 一般炒什么菜放蚝油hcv9jop1ns5r.cn 小猫的尾巴有什么作用hcv8jop7ns4r.cn 投其所好是什么意思hcv9jop5ns7r.cn
一个土一个贝念什么hcv7jop6ns1r.cn 输液葡萄糖有什么作用hcv8jop1ns7r.cn gl是什么gysmod.com 冲锋陷阵是什么生肖hcv8jop7ns5r.cn 吃饭不规律会导致什么问题bfb118.com
蔷薇是什么意思hcv8jop9ns4r.cn 早上9点到10点是什么时辰hcv9jop5ns7r.cn 皮蛋吃了有什么好处和坏处hcv8jop5ns3r.cn 6月26日什么星座hcv9jop7ns5r.cn 内分泌科主要看什么hcv9jop6ns9r.cn
霸王硬上弓是什么意思hkuteam.com 十滴水是什么hcv7jop6ns0r.cn mandy英文名什么意思gysmod.com but什么意思hcv9jop3ns1r.cn 子不孝父之过下一句是什么hcv8jop4ns8r.cn
百度