桃花是指什么生肖| 提手旁加茶念什么| 立秋是什么时候| 肉桂属于什么茶| 来大姨妈量少是什么原因| 甲状腺炎吃什么药| ldl是什么意思| 好朋友是什么意思| 门可罗雀什么意思| 517是什么意思| 有志什么成| 社保卡是干什么用的| 羡慕不来是什么意思| 新生儿吐奶什么原因| 紫米和黑米有什么区别| 孕妇缺铁吃什么食物好| 班别是什么意思| 八五年属什么生肖| 低钾会出现什么症状| 麸炒是什么意思| sds是什么意思| 属狗女和什么属相最配| 烧心反酸水吃什么药| 火花塞坏了有什么症状| 常喝柠檬水有什么好处和坏处| 凤辇是什么意思| 胳膊疼是什么病的前兆| 多种维生素什么时候吃效果最好| 细菌属于什么生物| 梦见自己掉头发是什么意思| 虎配什么生肖最好| 痛风什么水果不能吃| aids是什么意思| 双腿酸软无力吃什么药| 睡觉时胳膊和手发麻是什么原因| 取环什么时候取最好| 二月十七是什么星座| 鞠躬是什么意思| m3是什么意思| 金字旁有什么字| 十二月八号是什么星座| 月经量少是什么原因| 手心发热吃什么药| 伞裙搭配什么上衣| 资讯是什么意思| 水果皇后是什么水果| 维c之王是什么水果| 肺纤维化是什么症状| 盆腔炎吃什么消炎药效果好| 手上起倒刺是缺什么| 碘伏和络合碘有什么区别| 雌二醇高说明什么| 峦是什么意思| 姓陈取什么名字好听| 无缝衔接什么意思| 肝火旺盛喝什么茶| 七月份能种什么菜| 你想什么| 婊子是什么生肖| 花干是什么做的| 什么一刻值千金花有清香月有阴| 心衰吃什么药效果最好| 边长是什么| 三亚免税店什么最便宜| 尿酸高挂什么科| 手心长痣代表什么| 脂肪肝吃什么药治疗| 生育保险是什么意思| 属蛇男和什么属相最配| 蜥蜴什么动物| 前列腺吃什么药| lp 什么意思| 粘土是什么土| 破壁机什么牌子的最好| 年少轻狂是什么意思| 梦见剃光头是什么预兆| 圈癣是什么引起的| 妇科彩超主要检查什么| 身上遇热就痒是什么病| 有什么有什么的四字词语| 墨西哥说什么语言| 一什么不| 喉咙痛有痰吃什么药| 华盖什么意思| 器质性疾病是什么意思| midea是什么牌子| 八珍胶囊适合什么人吃| 攻坚是什么意思| 报应不爽什么意思| hca是什么意思| 骆驼趾是什么意思| 怕热出汗多是什么原因| 机智如你是什么意思| va是什么维生素| 袖珍人是什么| 试管是什么意思| 乳腺增生应该注意些什么| 越南说什么语言| 急救物品五定是什么| 冷战什么意思| 什么茶减肥效果最好| 月经来了同房会导致什么后果| 口腔异味吃什么药| 严肃的什么| 甲醛超标有什么危害| 杀跌是什么意思| 喉炎雾化用什么药| iphone的i是什么意思| 吃四方是什么生肖| 定夺是什么意思| 为什么嘴唇发紫| 晒后修复用什么比较好| 牛油果有什么功效| 锁骨是什么骨| 神经性头痛吃什么药| 什么的同学| 生地麦冬汤有什么功效| 月经过后腰酸疼是什么原因| 目赤什么意思| 坐蜡什么意思| 一什么黑影| 十恶不赦是什么意思| 腥臭味是什么妇科病| 腰痛什么原因| 负面影响是什么意思| 一等功有什么待遇| 青砖茶属于什么茶| 诺诺是什么意思| 女人长期喝西洋参有什么好处| 中国属于什么亚| 什么红什么绿| 为什么最近一直下雨| 六月初九是什么日子| 直落是什么意思| 血沉偏高是什么原因| 绝膑而亡是什么意思| 橙色五行属什么| MECT是什么| 喝中药尿黄是什么原因| 吃什么容易结石| 反流性食管炎吃什么食物好| 左下腹是什么部位| 60岁生日送什么礼物| 谈恋爱是为了什么| 好马不吃回头草什么意思| 7月16是什么星座| 心理障碍是什么病| 什么车子寸步难行脑筋急转弯| 什么人心什么| 男人喜欢女人什么| 乙肝e抗体阳性是什么意思| 心机是什么意思啊| 早上九点半是什么时辰| 四周岁打什么疫苗| 中国什么时候灭亡| 馄饨皮可以做什么美食| 安溪铁观音属于什么茶| badus是什么牌子的手表| 医保和社保有什么区别| congee是什么意思| 什么的枝干| 心脏无力吃什么药最好| 舌苔发白吃什么药| 脾肾阳虚吃什么药| 宫颈转化区三型是什么意思| 白色t恤配什么裤子| pt是什么单位| 什么是省控线| 维生素c有什么用| 肾结石是什么原因引起的| dxm是什么药| r0lex是什么牌子手表| 腋下有味道是什么原因| 焦虑症吃什么药最好| 耳塞戴久了有什么危害| 梦见一条小蛇是什么意思| tp代表什么| 痔疮不能吃什么东西| 什么马不能骑| 减肥吃什么菜| 6月18日是什么星座| 鼻子干燥是什么原因| 一个马一个并念什么| 福州有什么好吃的| 行云流水是什么意思| 裤裙搭配什么上衣好看| 外来猫进家有什么预兆| 感冒为什么会打喷嚏| 经期吃什么好| 打扰是什么意思| 茶叶含有什么成分| 小孩支气管炎吃什么药| 视力模糊是什么原因引起的| 做梦梦到很多蛇是什么意思| 梦见好多猫是什么意思| 开瑞坦是什么药| 疫情是什么| 小便失禁是什么原因男性| 氧化亚铜什么颜色| oder是什么意思| 胃胀气吃什么| 报复是什么意思| 降血脂吃什么最好| 男生肚子疼是什么原因| 降血糖吃什么药| 一饿就胃疼是什么原因| L是什么| 带沉香手串有什么好处| ivd是什么意思| 生目念什么| 什么叫多巴胺| 为什么小孩子有白头发| 红糖水什么时候喝| 骨转移用什么药| 为什么感冒会全身酸痛| 大象灰配什么颜色好看| 全能教是什么| 欧多桑是什么意思| 生抽和老抽有什么区别| 什么叫前庭功能| suv什么意思| 胰管扩张是什么意思| 蹲不下去是什么原因| 例假是什么| 什么是性激素| 龟头炎用什么药好| qid是什么意思| 人什么什么事的成语| 被蝎子蛰了有什么好处| 四维彩超主要检查什么| 感冒挂号挂什么科| 溶媒是什么| 牛蛙不能和什么一起吃| 萝莉控是什么意思| 狗吃什么食物| 脑电图是检查什么的| 什么是围绝经期| 梦见小男孩是什么预兆| 头顶长白头发是什么原因造成的| 什么时间最容易受孕| 痔疮便血吃什么药| 冬天穿什么| 胎盘能治什么病| 营养师是干什么的| 鼻甲肥大吃什么药最好| 脂溢性脱发是什么原因引起的| 朝鲜为什么闭关锁国| 莲子吃了有什么好处| 月经不规律吃什么药调理| 思的五行属性是什么| 晚上睡觉出汗是什么原因| 五行缺金是什么意思| 什么是细菌感染| 扁桃体炎吃什么消炎药| 西米是什么东西做的| k14是什么金| 秦皇岛有什么特产| 扁桃是什么水果| 粉玫瑰代表什么意思| 酸奶不能和什么一起吃| 女人下面水多是什么原因| 盗汗遗精是什么意思| 布病挂什么科| 黄风怪是什么动物| 百度

上海人均GDP迈上10万元台阶 常住人口总数2415.27万

百度 针对明明之后的上学情况,明明的父亲表示,会选择让明明换一所幼儿园,多读一年的大班课程。

In genetics, a selective sweep is the process through which a new beneficial mutation that increases its frequency and becomes fixed (i.e., reaches a frequency of 1) in the population leads to the reduction or elimination of genetic variation among nucleotide sequences that are near the mutation. In selective sweep, positive selection causes the new mutation to reach fixation so quickly that linked alleles can "hitchhike" and also become fixed.

Overview

edit

A selective sweep can occur when a rare or previously non-existing allele that increases the fitness of the carrier (relative to other members of the population) increases rapidly in frequency due to natural selection. As the prevalence of such a beneficial allele increases, genetic variants that happen to be present on the genomic background (the DNA neighborhood) of the beneficial allele will also become more prevalent. This is called genetic hitchhiking. A selective sweep due to a strongly selected allele, which arose on a single genomic background, therefore results in a region of the genome with a large reduction of genetic variation in that chromosome region. The idea that strong positive selection could reduce nearby genetic variation due to hitchhiking was proposed by John Maynard-Smith and John Haigh in 1974.[1]

Not all sweeps reduce genetic variation in the same way. Sweeps can be placed into three main categories:

  1. The "classic selective sweep" or "hard selective sweep" is expected to occur when beneficial mutations are rare, but once a beneficial mutation has occurred it increases in frequency rapidly, thereby drastically reducing genetic variation in the population.[1]
  2. Another type of sweep, a "soft sweep from standing genetic variation," occurs when a previously neutral mutation that was present in a population becomes beneficial because of an environmental change. Such a mutation may be present on several genomic backgrounds so that when it rapidly increases in frequency, it does not erase all genetic variation in the population.[2]
  3. Finally, a "multiple origin soft sweep" occurs when mutations are common (for example in a large population) so that the same or similar beneficial mutations occur on different genomic backgrounds such that no single genomic background can hitchhike to high frequency.[3]
 
This is a diagram of a hard selective sweep. It shows the different steps (a beneficial mutation occurs, increases in frequency and fixes in a population) and the effect on nearby genetic variation.

Sweeps do not occur when selection simultaneously causes very small shifts in allele frequencies at many loci each with standing variation (polygenic adaptation).

 
This is a diagram of a soft selective sweep from standing genetic variation. It shows the different steps (a neutral mutation becomes beneficial, increases in frequency and fixes in a population) and the effect on nearby genetic variation.
 
This is a diagram of a multiple origin soft selective sweep from recurrent mutation. It shows the different steps (a beneficial mutation occurs and increases in frequency, but before it fixes the same mutation occur again on a second genomic background, together, the mutations fix in the population) and the effect on nearby genetic variation.

Detection

edit

Whether or not a selective sweep has occurred can be investigated in various ways. One method is to measure linkage disequilibrium, i.e., whether a given haplotype is overrepresented in the population. Under neutral evolution, genetic recombination will result in the reshuffling of the different alleles within a haplotype, and no single haplotype will dominate the population. However, during a selective sweep, selection for a positively selected gene variant will also result in selection of neighbouring alleles and less opportunity for recombination. Therefore, the presence of strong linkage disequilibrium might indicate that there has been a recent selective sweep, and can be used to identify sites recently under selection.

There have been many scans for selective sweeps in humans and other species, using a variety of statistical approaches and assumptions.[4]

In maize, a recent comparison of yellow and white corn genotypes surrounding Y1—the phytoene synthetase gene responsible for the yellow endosperm color, shows strong evidence for a selective sweep in yellow germplasm reducing diversity at this locus and linkage disequilibrium in surrounding regions. White maize lines had increased diversity and no evidence of linkage disequilibrium associated with a selective sweep.[5]

Relevance to disease

edit

Because selective sweeps allow for rapid adaptation, they have been cited as a key factor in the ability of pathogenic bacteria and viruses to attack their hosts and survive the medicines we use to treat them.[6] In such systems, the competition between host and parasite is often characterized as an evolutionary "arms race", so the more rapidly one organism can change its method of attack or defense, the better. This has elsewhere been described by the Red Queen hypothesis. Needless to say, a more effective pathogen or a more resistant host will have an adaptive advantage over its conspecifics, providing the fuel for a selective sweep.

One example comes from the human influenza virus, which has been involved in an adaptive contest with humans for hundreds of years. While antigenic drift (the gradual change of surface antigens) is considered the traditional model for changes in the viral genotype, recent evidence[7] suggests that selective sweeps play an important role as well. In several flu populations, the time to the most recent common ancestor (TMRCA) of "sister" strains, an indication of relatedness, suggested that they had all evolved from a common progenitor within just a few years. Periods of low genetic diversity, presumably resultant from genetic sweeps, gave way to increasing diversity as different strains adapted to their own locales.

A similar case can be found in Toxoplasma gondii, a remarkably potent protozoan parasite capable of infecting warm-blooded animals. T. gondii was recently discovered to exist in only three clonal lineages in all of Europe and North America.[8] In other words, there are only three genetically distinct strains of this parasite in all of the Old World and much of the New World. These three strains are characterized by a single monomorphic version of the gene Chr1a, which emerged at approximately the same time as the three modern clones. It appears then, that a novel genotype emerged containing this form of Chr1a and swept the entire European and North American population of Toxoplasma gondii, bringing with it the rest of its genome via genetic hitchhiking. The South American strains of T. gondii, of which there are far more than exist elsewhere, also carry this allele of Chr1a.

Involvement in agriculture and domestication

edit

Rarely are genetic variability and its opposing forces, including adaptation, more relevant than in the generation of domestic and agricultural species. Cultivated crops, for example, have essentially been genetically modified for more than ten thousand years,[9] subjected to artificial selective pressures, and forced to adapt rapidly to new environments. Selective sweeps provide a baseline from which different varietals could have emerged.[10]

For example, recent study of the corn (Zea mays) genotype uncovered dozens of ancient selective sweeps uniting modern cultivars on the basis of shared genetic data possibly dating back as far as domestic corn's wild counterpart, teosinte. In other words, though artificial selection has shaped the genome of corn into a number of distinctly adapted cultivars, selective sweeps acting early in its development provide a unifying homoplasy of genetic sequence. In a sense, the long-buried sweeps may give evidence of corn's, and teosinte's, ancestral state by elucidating a common genetic background between the two.

Another example of the role of selective sweeps in domestication comes from the chicken. A Swedish research group recently used parallel sequencing techniques to examine eight cultivated varieties of chicken and their closest wild ancestor with the goal of uncovering genetic similarities resultant from selective sweeps.[11] They managed to uncover evidence of several selective sweeps, most notably in the gene responsible for thyroid-stimulating hormone receptor (TSHR), which regulates the metabolic and photoperiod-related elements of reproduction. What this suggests is that, at some point in the domestication of the chicken, a selective sweep, probably driven by human intervention, subtly changed the reproductive machinery of the bird, presumably to the advantage of its human manipulators.

In humans

edit

Examples of selective sweeps in humans are in variants affecting lactase persistence,[12][13] and adaptation to high altitude.[14]

See also

edit

References

edit
  1. ^ a b Smith, John Maynard; Haigh, John (2025-08-07). "The hitch-hiking effect of a favourable gene". Genetics Research. 23 (1): 23–35. doi:10.1017/S0016672300014634. PMID 4407212.
  2. ^ Hermisson, Joachim; Pennings, Pleuni S. (2025-08-07). "Soft Sweeps". Genetics. 169 (4): 2335–2352. doi:10.1534/genetics.104.036947. PMC 1449620. PMID 15716498.
  3. ^ Pennings, Pleuni S.; Hermisson, Joachim (2025-08-07). "Soft Sweeps II—Molecular Population Genetics of Adaptation from Recurrent Mutation or Migration". Molecular Biology and Evolution. 23 (5): 1076–1084. doi:10.1093/molbev/msj117. PMID 16520336.
  4. ^ Fu, Wenqing; Akey, Joshua M. (2013). "Selection and adaptation in the human genome". Annual Review of Genomics and Human Genetics. 14: 467–489. doi:10.1146/annurev-genom-091212-153509. PMID 23834317.
  5. ^ Palaisa K; Morgante M; Tingey S; Rafalski A (June 2004). "Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep". Proc. Natl. Acad. Sci. U.S.A. 101 (26): 9885–90. Bibcode:2004PNAS..101.9885P. doi:10.1073/pnas.0307839101. PMC 470768. PMID 15161968.
  6. ^ Sa, Juliana Marth, Twua, Olivia Twua, Haytona, Karen, Reyesa, Sahily, Fayb, Michael P., Ringwald, Pascal, & Wellemsa, Thomas E. (2009). "Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine". PNAS. 106 (45): 18883–18889. doi:10.1073/pnas.0911317106. PMC 2771746. PMID 19884511.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Rambaut, Andrew, Pybus, Oliver G., Nelson, Martha I., Viboud, Cecile, Taubenberger, Jeffery K., & Holmes, Edward C. (2008). "The genomic and epidemiological dynamics of human influenza A virus". Nature. 453 (7195): 615–619. Bibcode:2008Natur.453..615R. doi:10.1038/nature06945. PMC 2441973. PMID 18418375.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Sibley, L. David; Ajioka, James W (2008). "Population Structure of Toxoplasma gondii: Clonal Expansion Driven by Infrequent Recombination and Selective Sweeps". Annu. Rev. Microbiol. 62 (1): 329–359. doi:10.1146/annurev.micro.62.081307.162925. PMID 18544039.
  9. ^ Hillman, G., Hedges, R., Moore, A., Colledge, S., & Pettitt, P. (2001). "New evidence of Late glacial cereal cultivation at Abu Hureyra on the Euphrates". Holocene. 4: 388–393.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Gore, Michael A., Chia, Jer-Ming, Elshire, Robert J., Sun, Ersoz, Elhan S., Hurwitz, Bonnie L., Peiffer, Jason A., McMullen, Michael D., Grills, George S., Ross-Ibarra, Jeffrey, Ware, Doreen H., & Buckler, Edward S. (2009). "A First-Generation Haplotype Map of Maize". Science. 326 (5956): 1115–7. Bibcode:2009Sci...326.1115G. CiteSeerX 10.1.1.658.7628. doi:10.1126/science.1177837. PMID 19965431. S2CID 206521881.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Rubin, Carl-Johan, Zody, Michael C., Eriksson, Jonas, Meadows, Jennifer R. S., Sherwood, Ellen, Webster, Matthew T., Jiang, Lin, Ingman, Max, Sharpe, Sojeong, Ted Ka, Hallbo?k, Finn, Besnier, Francois, Carlborg, Orjan, Bed'hom, Bertrand, Tixier-Boichard, Michele, Jensen, Per, Siege, Paul, Lindblad-Toh, Kerstin, & Andersson, Leif (March 2010). "Whole-genome resequencing reveals loci under selection during chicken domestication" (PDF). Letters to Nature. 464 (7288): 587–91. Bibcode:2010Natur.464..587R. doi:10.1038/nature08832. PMID 20220755.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Bersaglieri, Todd; Sabeti, Pardis C.; Patterson, Nick; Vanderploeg, Trisha; Schaffner, Steve F.; Drake, Jared A.; Rhodes, Matthew; Reich, David E.; Hirschhorn, Joel N. (2025-08-07). "Genetic signatures of strong recent positive selection at the lactase gene". American Journal of Human Genetics. 74 (6): 1111–1120. doi:10.1086/421051. PMC 1182075. PMID 15114531.
  13. ^ Tishkoff, Sarah A.; Reed, Floyd A.; Ranciaro, Alessia; Voight, Benjamin F.; Babbitt, Courtney C.; Silverman, Jesse S.; Powell, Kweli; Mortensen, Holly M.; Hirbo, Jibril B. (2025-08-07). "Convergent adaptation of human lactase persistence in Africa and Europe". Nature Genetics. 39 (1): 31–40. doi:10.1038/ng1946. PMC 2672153. PMID 17159977.
  14. ^ Yi, Xin; Liang, Yu; Huerta-Sanchez, Emilia; Jin, Xin; Cuo, Zha Xi Ping; Pool, John E.; Xu, Xun; Jiang, Hui; Vinckenbosch, Nicolas (2025-08-07). "Sequencing of 50 human exomes reveals adaptation to high altitude". Science. 329 (5987): 75–78. Bibcode:2010Sci...329...75Y. doi:10.1126/science.1190371. PMC 3711608. PMID 20595611.
韬略是什么意思 女性肾虚吃什么补最好最快 打碎碗是什么预兆 圣诞节送孩子什么礼物好 蒂芙尼蓝是什么颜色
拔牙后可以吃什么 裙裤适合什么人穿 40不惑是什么意思 淘米水洗脸有什么好处 鹿角有什么功效和作用
左眼跳什么 乘风破浪是什么生肖 私生子什么意思 下面有异味是什么原因 会厌炎是什么病
榴莲什么季节吃最好 梦见铲雪预示着什么 fl是胎儿的什么 梦见袜子破了是什么意思 湿气重去医院挂什么科
血虚吃什么好hcv7jop9ns8r.cn 右眼皮跳是什么原因hcv8jop9ns3r.cn 兰桂坊是什么地方xjhesheng.com 安全起见是什么意思hcv7jop7ns0r.cn 造影是什么意思hcv8jop1ns9r.cn
失独是什么意思hcv9jop0ns6r.cn 宗人府是干什么的beikeqingting.com 葡萄酒中的单宁是什么wmyky.com dwi呈高信号什么意思hcv8jop4ns8r.cn 菲妮迪女装是什么档次creativexi.com
脚脖子疼是什么原因hcv7jop5ns2r.cn 什么是碱性磷酸酶bysq.com 抗衡是什么意思hcv8jop1ns2r.cn 类风湿性关节炎的症状是什么hcv8jop2ns8r.cn 赛脸什么意思hcv7jop6ns2r.cn
上面白下面本念什么hcv7jop4ns7r.cn 布鲁斯是什么hcv8jop3ns7r.cn 黄体中期是什么意思hcv9jop2ns2r.cn 什么是假性高血压hcv9jop1ns8r.cn 桃花什么时候开花hcv9jop4ns4r.cn
百度