叉烧是什么肉做的| 狸子是什么动物| 情人总分分合合是什么歌| 芹菜不能和什么食物一起吃| 他克莫司软膏治疗什么| o型血与a型血生的孩子是什么血型| 打了狂犬疫苗不能吃什么| 西柚是什么水果| 带资进组什么意思| 小鸟来家里有什么预兆| 金国是什么民族| 回门是什么意思| 欺山莫欺水是什么意思| 敖是什么意思| g是什么单位| 嘴唇上长疱疹用什么药| 根管预备是什么意思| 名媛是什么意思| 鱼油什么时候吃最好| 叶韵是什么意思| 人流后可以吃什么| hcg是什么意思| 非虫念什么| 二级警监是什么级别| 痣的位置代表什么| 胸腔积液是什么原因造成的| 怀孕脚浮肿是什么原因引起的| 豚鼠吃什么| 2月23是什么星座| 心肌供血不足吃什么| 牛肚是什么部位| nars属于什么档次| 儒家思想是什么意思| 用什么擦地最干净| 祭日和忌日是什么意思| 突然是什么意思| 什么东西清肺最好| rl是什么意思| k值是什么意思| 新生儿嘴唇发紫是什么原因| 青筋凸起是什么原因| 五香粉是什么| 县级干部是什么级别| 白酒兑什么饮料最好喝| 蜂王浆是什么味道| 初音未来是什么| 说三道四的意思是什么| 撒拉族和回族有什么区别| 结膜炎是什么病| 地贫是什么| 宝宝发烧手脚冰凉是什么原因| a血型和o血型生出宝宝是什么血型| 金色搭配什么颜色好看| 甲醇是什么| 臃肿是什么意思| 7月份适合种什么菜| 卸妆用什么最好| 匪夷所思是什么意思| 紊乱什么意思| 坚果补充什么营养成分| 记字五行属什么| 女性肾虚吃什么药| 93岁属什么生肖| 暖气是什么症状| 晚上睡觉手麻是什么原因| b型o型生出来的孩子什么血型| 复方甘草酸苷片治什么病| 宝宝低烧是什么原因引起的| 呈味核苷酸二钠是什么| 脚趾麻是什么病的前兆| 过敏是什么原因引起的| 维生素b2治什么病| 蓝牙耳机什么品牌好| 宝宝消化不好吃什么调理| 九二年属什么生肖| 18号来月经什么时候是排卵期| 之一的意思是什么| 属龙的守护神是什么菩萨| 手机壳什么材质最好| 爱的反义词是什么| 梦到自己流鼻血是什么预兆| 1968年猴是什么命| 拿什么拯救你我的爱人演员表| 男人下巴有痣代表什么| 大姨妈来了喝什么好| 生发吃什么食物好| 唐氏综合症是什么| 为什么会遗精| pbr是什么意思| 儿童喝蜂蜜水有什么好处和坏处| 喉咙干咳吃什么药| 通草和什么炖最催奶了| 教主是什么意思| 转氨酶偏高是什么意思| 榴莲不能与什么食物一起吃| 寻常疣用什么药膏除根| 腹泻拉水是什么原因| 舌苔厚黄是怎么回事吃什么药| 喉咙发炎吃什么药好得快| 世风日下什么意思| 老打嗝是什么病的前兆| 舌苔白厚有齿痕是什么原因| 脱靶是什么意思| 11月11日是什么星座| 17号来月经什么时候是排卵期| 儿童过敏吃什么药| 决明子配什么喝最减肥| hpv什么病毒| 肩周炎贴什么膏药效果最好| 地位是什么意思| 孕妇梦见下雪是什么征兆| 为什么总是长口腔溃疡| 纳米是什么| food什么意思| 登门拜访是什么意思| 什么清什么楚| 鹦鹉爱吃什么| 尿液细菌高是什么原因| 两肺纹理增多什么意思| 米五行属什么| 兵痞是什么意思| 三头六臂指什么生肖| 牙医需要什么学历| 华西医院院长什么级别| 吃什么补钾快| 什么是杀青| 什么时候最热| 为什么耳朵总是嗡嗡响| 姐姐的老公叫什么| 手脱皮用什么药膏最好| 乌黑乌黑的什么| 茄子把有什么功效| 早期流产是什么症状| 什么偏旁| 面包是什么意思| 小孩睡觉流口水是什么原因| 拉肚子吃什么药比较好| 小孩手上脱皮是什么原因| 下午8点是什么时辰| 自愿离婚要带什么证件| 大黄泡水喝有什么功效| mpr是什么意思| 西洋参吃多了有什么副作用| 上火喝什么茶| 尚公主是什么意思| 用什么方法治牙疼| 口炎是什么字| 牵牛花为什么叫牵牛花| m 是什么单位| 梦见吃梨是什么意思| 石英岩质玉是什么玉| 梦见骂人是什么意思| 甲状腺结节对身体有什么影响| 步兵什么意思| 美容师都要学什么| 早上吃黄瓜有什么好处| 吃什么补蛋白质| 为什么会牙痛| 除氯是什么意思| 肺结核是什么| 盆腔积液有什么症状| 炸酱面的酱是什么酱| 热射病是什么| 飞龙在天是什么生肖| 鼻子大说明什么| 香蕉有什么作用与功效| 日加华读什么| 次月是什么意思| 交运是什么意思| 早博是什么意思| 口比念什么| 鸡的守护神是什么菩萨| 缺钾有什么症状和危害| 铁剂不能和什么一起吃| 吃什么东西涨奶最快| beaf什么意思| 布施蚂蚁什么食物最好| 花痴什么意思| 什么叫精神出轨| 拔牙后可以吃什么| 一片哗然是什么意思| 男人头发硬说明什么| 吃什么补钙最好| 小便发黄是什么症状| 意尔康属于什么档次| 输血前八项指什么| 垂涎欲滴意思是什么| 过午不食是什么意思| 罐肠什么意思| 橄榄菜长什么样子图片| 维生素b补什么的| 可定什么时间服用最好| 电解质水是什么| 英国用什么货币| 九月二十二是什么星座| 天空像什么| 内分泌科属于什么科| 为什么不建议打水光针| 尿毒症小便什么颜色| 肝实质回声欠均匀是什么意思| 苦瓜有什么作用| 摩尔是什么| 梦见大象是什么预兆| 退行性病变是什么意思| 孕妇感染弓形虫有什么症状| 不约什么什么| 梦见别人送钱给我是什么意思| 乙肝表面抗体定量偏高什么意思| 肺与大肠相表里是什么意思| 前方起飞是什么意思| 串词是什么| 天天喝绿茶有什么好处和坏处| 壁虎吃什么食物| 象是什么结构| 长痘痘去医院挂什么科| 植物神经紊乱吃什么中成药| 招魂是什么意思| 右手发麻是什么病的前兆| 毫升是什么单位| 菊花像什么比喻句| 金鱼藻属于什么植物| 高岗为什么自杀| 慢阻肺吃什么药最有效最好| 口干口苦吃什么中成药| 卵泡生成素高是什么原因| 日语牙白什么意思| badus是什么牌子的手表| 巴西龟吃什么食物| 青梅竹马是什么意思| 农历8月是什么星座| 3月3号是什么星座| 那好吧是什么意思| 古曼童是什么| 胆囊壁胆固醇结晶是什么意思| 拔罐对身体有什么好处和坏处| 诸葛亮老婆叫什么名字| 手皮脱皮是什么原因| vans是什么牌子| 121是什么意思| 2.20什么星座| 小孩干呕是什么原因| 分割线是什么意思| 编程是什么专业| 木木耳朵旁是什么字| 六月二十九日是什么星座| 6541是什么药| 经常长溃疡是什么原因引起的| 黄连水有什么作用与功效| 抗氧化什么意思| 小孩子睡觉磨牙是什么原因| 脑梗会有什么后遗症| 查乳腺挂什么科| 热感冒吃什么食物好| 共产主义社会是什么样的社会| 仓鼠和老鼠有什么区别| 洋红色是什么颜色| 大四什么时候毕业| 瘦肉是什么肉| 女人梦到小蛇什么预兆| 为什么叫香港脚| acs是什么病| 嘴巴发甜是什么原因| 虾皮是什么虾| 为什么手脚老是出汗| 百度

李宏斌在厅系统生产调度会上强调:以非常...

(Redirected from Nonlinearity)
百度   征集的女性公民,为普通高中应届毕业生和全日制普通高等学校应届毕业生及在校生。

In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input.[1][2] Nonlinear problems are of interest to engineers, biologists,[3][4][5] physicists,[6][7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature.[8] Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

Typically, the behavior of a nonlinear system is described in mathematics by a nonlinear system of equations, which is a set of simultaneous equations in which the unknowns (or the unknown functions in the case of differential equations) appear as variables of a polynomial of degree higher than one or in the argument of a function which is not a polynomial of degree one. In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of the unknown variables or functions that appear in them. Systems can be defined as nonlinear, regardless of whether known linear functions appear in the equations. In particular, a differential equation is linear if it is linear in terms of the unknown function and its derivatives, even if nonlinear in terms of the other variables appearing in it.

As nonlinear dynamical equations are difficult to solve, nonlinear systems are commonly approximated by linear equations (linearization). This works well up to some accuracy and some range for the input values, but some interesting phenomena such as solitons, chaos,[9] and singularities are hidden by linearization. It follows that some aspects of the dynamic behavior of a nonlinear system can appear to be counterintuitive, unpredictable or even chaotic. Although such chaotic behavior may resemble random behavior, it is in fact not random. For example, some aspects of the weather are seen to be chaotic, where simple changes in one part of the system produce complex effects throughout. This nonlinearity is one of the reasons why accurate long-term forecasts are impossible with current technology.

Some authors use the term nonlinear science for the study of nonlinear systems. This term is disputed by others:

Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals.

Definition

edit

In mathematics, a linear map (or linear function)   is one which satisfies both of the following properties:

  • Additivity or superposition principle:  
  • Homogeneity:  

Additivity implies homogeneity for any rational α, and, for continuous functions, for any real α. For a complex α, homogeneity does not follow from additivity. For example, an antilinear map is additive but not homogeneous. The conditions of additivity and homogeneity are often combined in the superposition principle

 

An equation written as

 

is called linear if   is a linear map (as defined above) and nonlinear otherwise. The equation is called homogeneous if   and   is a homogeneous function.

The definition   is very general in that   can be any sensible mathematical object (number, vector, function, etc.), and the function   can literally be any mapping, including integration or differentiation with associated constraints (such as boundary values). If   contains differentiation with respect to  , the result will be a differential equation.

Nonlinear systems of equations

edit

A nonlinear system of equations consists of a set of equations in several variables such that at least one of them is not a linear equation.

For a single equation of the form   many methods have been designed; see Root-finding algorithm. In the case where f is a polynomial, one has a polynomial equation such as   The general root-finding algorithms apply to polynomial roots, but, generally they do not find all the roots, and when they fail to find a root, this does not imply that there is no roots. Specific methods for polynomials allow finding all roots or the real roots; see real-root isolation.

Solving systems of polynomial equations, that is finding the common zeros of a set of several polynomials in several variables is a difficult problem for which elaborate algorithms have been designed, such as Gr?bner base algorithms.[11]

For the general case of system of equations formed by equating to zero several differentiable functions, the main method is Newton's method and its variants. Generally they may provide a solution, but do not provide any information on the number of solutions.

Nonlinear recurrence relations

edit

A nonlinear recurrence relation defines successive terms of a sequence as a nonlinear function of preceding terms. Examples of nonlinear recurrence relations are the logistic map and the relations that define the various Hofstadter sequences. Nonlinear discrete models that represent a wide class of nonlinear recurrence relationships include the NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model and the related nonlinear system identification and analysis procedures.[12] These approaches can be used to study a wide class of complex nonlinear behaviors in the time, frequency, and spatio-temporal domains.

Nonlinear differential equations

edit

A system of differential equations is said to be nonlinear if it is not a system of linear equations. Problems involving nonlinear differential equations are extremely diverse, and methods of solution or analysis are problem dependent. Examples of nonlinear differential equations are the Navier–Stokes equations in fluid dynamics and the Lotka–Volterra equations in biology.

One of the greatest difficulties of nonlinear problems is that it is not generally possible to combine known solutions into new solutions. In linear problems, for example, a family of linearly independent solutions can be used to construct general solutions through the superposition principle. A good example of this is one-dimensional heat transport with Dirichlet boundary conditions, the solution of which can be written as a time-dependent linear combination of sinusoids of differing frequencies; this makes solutions very flexible. It is often possible to find several very specific solutions to nonlinear equations, however the lack of a superposition principle prevents the construction of new solutions.

Ordinary differential equations

edit

First order ordinary differential equations are often exactly solvable by separation of variables, especially for autonomous equations. For example, the nonlinear equation

 

has   as a general solution (and also the special solution   corresponding to the limit of the general solution when C tends to infinity). The equation is nonlinear because it may be written as

 

and the left-hand side of the equation is not a linear function of   and its derivatives. Note that if the   term were replaced with  , the problem would be linear (the exponential decay problem).

Second and higher order ordinary differential equations (more generally, systems of nonlinear equations) rarely yield closed-form solutions, though implicit solutions and solutions involving nonelementary integrals are encountered.

Common methods for the qualitative analysis of nonlinear ordinary differential equations include:

Partial differential equations

edit

The most common basic approach to studying nonlinear partial differential equations is to change the variables (or otherwise transform the problem) so that the resulting problem is simpler (possibly linear). Sometimes, the equation may be transformed into one or more ordinary differential equations, as seen in separation of variables, which is always useful whether or not the resulting ordinary differential equation(s) is solvable.

Another common (though less mathematical) tactic, often exploited in fluid and heat mechanics, is to use scale analysis to simplify a general, natural equation in a certain specific boundary value problem. For example, the (very) nonlinear Navier-Stokes equations can be simplified into one linear partial differential equation in the case of transient, laminar, one dimensional flow in a circular pipe; the scale analysis provides conditions under which the flow is laminar and one dimensional and also yields the simplified equation.

Other methods include examining the characteristics and using the methods outlined above for ordinary differential equations.

Pendula

edit
 
Illustration of a pendulum
 
Linearizations of a pendulum

A classic, extensively studied nonlinear problem is the dynamics of a frictionless pendulum under the influence of gravity. Using Lagrangian mechanics, it may be shown[14] that the motion of a pendulum can be described by the dimensionless nonlinear equation

 

where gravity points "downwards" and   is the angle the pendulum forms with its rest position, as shown in the figure at right. One approach to "solving" this equation is to use   as an integrating factor, which would eventually yield

 

which is an implicit solution involving an elliptic integral. This "solution" generally does not have many uses because most of the nature of the solution is hidden in the nonelementary integral (nonelementary unless  ).

Another way to approach the problem is to linearize any nonlinearity (the sine function term in this case) at the various points of interest through Taylor expansions. For example, the linearization at  , called the small angle approximation, is

 

since   for  . This is a simple harmonic oscillator corresponding to oscillations of the pendulum near the bottom of its path. Another linearization would be at  , corresponding to the pendulum being straight up:

 

since   for  . The solution to this problem involves hyperbolic sinusoids, and note that unlike the small angle approximation, this approximation is unstable, meaning that   will usually grow without limit, though bounded solutions are possible. This corresponds to the difficulty of balancing a pendulum upright, it is literally an unstable state.

One more interesting linearization is possible around  , around which  :

 

This corresponds to a free fall problem. A very useful qualitative picture of the pendulum's dynamics may be obtained by piecing together such linearizations, as seen in the figure at right. Other techniques may be used to find (exact) phase portraits and approximate periods.

Types of nonlinear dynamic behaviors

edit
  • Amplitude death – any oscillations present in the system cease due to some kind of interaction with other system or feedback by the same system
  • Chaos – values of a system cannot be predicted indefinitely far into the future, and fluctuations are aperiodic
  • Multistability – the presence of two or more stable states
  • Solitons – self-reinforcing solitary waves
  • Limit cycles – asymptotic periodic orbits to which destabilized fixed points are attracted.
  • Self-oscillations – feedback oscillations taking place in open dissipative physical systems.

Examples of nonlinear equations

edit

See also

edit

References

edit
  1. ^ "Explained: Linear and nonlinear systems". MIT News. Retrieved 2025-08-06.
  2. ^ "Nonlinear systems, Applied Mathematics - University of Birmingham". www.birmingham.ac.uk. Retrieved 2025-08-06.
  3. ^ "Nonlinear Biology", The Nonlinear Universe, The Frontiers Collection, Springer Berlin Heidelberg, 2007, pp. 181–276, doi:10.1007/978-3-540-34153-6_7, ISBN 9783540341529
  4. ^ Korenberg, Michael J.; Hunter, Ian W. (March 1996). "The identification of nonlinear biological systems: Volterra kernel approaches". Annals of Biomedical Engineering. 24 (2): 250–268. doi:10.1007/bf02667354. ISSN 0090-6964. PMID 8678357. S2CID 20643206.
  5. ^ Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-Fran?ois; Vincent Croquette; Bensimon, David (2008). "Some nonlinear challenges in biology". Nonlinearity. 21 (8): T131. Bibcode:2008Nonli..21..131M. doi:10.1088/0951-7715/21/8/T03. ISSN 0951-7715. S2CID 119808230.
  6. ^ Gintautas, V. (2008). "Resonant forcing of nonlinear systems of differential equations". Chaos. 18 (3): 033118. arXiv:0803.2252. Bibcode:2008Chaos..18c3118G. doi:10.1063/1.2964200. PMID 19045456. S2CID 18345817.
  7. ^ Stephenson, C.; et., al. (2017). "Topological properties of a self-assembled electrical network via ab initio calculation". Sci. Rep. 7: 41621. Bibcode:2017NatSR...741621S. doi:10.1038/srep41621. PMC 5290745. PMID 28155863.
  8. ^ de Canete, Javier, Cipriano Galindo, and Inmaculada Garcia-Moral (2011). System Engineering and Automation: An Interactive Educational Approach. Berlin: Springer. p. 46. ISBN 978-3642202292. Retrieved 20 January 2018.{{cite book}}: CS1 maint: multiple names: authors list (link)
  9. ^ Nonlinear Dynamics I: Chaos Archived 2025-08-06 at the Wayback Machine at MIT's OpenCourseWare
  10. ^ Campbell, David K. (25 November 2004). "Nonlinear physics: Fresh breather". Nature. 432 (7016): 455–456. Bibcode:2004Natur.432..455C. doi:10.1038/432455a. ISSN 0028-0836. PMID 15565139. S2CID 4403332.
  11. ^ Lazard, D. (2009). "Thirty years of Polynomial System Solving, and now?". Journal of Symbolic Computation. 44 (3): 222–231. doi:10.1016/j.jsc.2008.03.004.
  12. ^ Billings S.A. "Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains". Wiley, 2013
  13. ^ Vardia T. Haimo (1985). "Finite Time Differential Equations". 1985 24th IEEE Conference on Decision and Control. pp. 1729–1733. doi:10.1109/CDC.1985.268832. S2CID 45426376.
  14. ^ David Tong: Lectures on Classical Dynamics

Further reading

edit
edit
奔豚是什么意思 骨质断裂是什么意思 粘液阳性是什么意思 临终关怀的目的是什么 脚底疼是什么原因
球蛋白适合什么人打 莫拉古是什么意思 头疼是什么原因导致的 反酸烧心吃什么药效果好 属猴本命佛是什么佛
温碧泉属于什么档次 三个火字念什么 北京大学校长什么级别 众所周知是什么生肖 肠镜检查挂什么科室
世界上最深的湖泊是什么 眼睛长眼屎是什么原因 六月十号什么星座 标准是什么意思 吃什么能让奶水变多
血余炭是什么制成的hcv8jop9ns7r.cn 爸爸生日送什么礼物hcv8jop4ns9r.cn 打车用什么软件hcv9jop1ns4r.cn 肚子胀气吃什么通气hcv7jop9ns8r.cn 缺钾会出现什么症状clwhiglsz.com
处女座和什么座最配对hcv8jop0ns4r.cn am和pm是什么意思hcv9jop0ns2r.cn 攻击的近义词是什么wuhaiwuya.com 05属什么生肖hcv9jop3ns6r.cn 荷叶茶有什么作用hcv9jop3ns8r.cn
马齿苋与什么食物相克hcv8jop3ns1r.cn 球蛋白的功效与作用是什么hcv8jop8ns4r.cn 眼睛长结石是什么原因引起的wuhaiwuya.com 冲喜是什么意思hcv9jop4ns2r.cn 掰弯了是什么意思hcv7jop4ns5r.cn
审计署是什么级别hcv8jop6ns3r.cn 蜘蛛怕什么hcv7jop6ns0r.cn 怀孕喝什么汤最有营养hcv7jop4ns8r.cn 移动增值业务费是什么hcv8jop8ns2r.cn 检查尿液能查出什么病hcv9jop1ns2r.cn
百度