甲不开仓财物耗散是什么意思| 九月一日是什么星座| 肚脐眼周围是什么器官| 头晕吃什么药| 吃什么食物能降低胆固醇| 欧洲为什么没有统一| 肛门被捅后有什么影响| 舒张压偏高是什么原因造成的| 欣赏一个人是什么意思| 眼袋是什么| 尿路感染有什么症状| 直白是什么意思| 丰衣足食是什么生肖| 尿钙是什么意思| kitty什么意思| 女人右手断掌代表什么| 上司是什么意思| 什么是特殊膳食| 黑户是什么意思| 口嫌体正直是什么意思| 橘白猫是什么品种| 吃什么有助于降血压| 胬肉是什么意思| examine什么意思| 梦见到处都是蛇预示着什么| 农历8月20日是什么星座| swan是什么意思| idh是什么意思| 吃什么减脂肪| 十二生肖各代表什么花| 今年28岁属什么生肖| 保护嗓子长期喝什么茶| 师弟是什么意思| 子宫颈肥大有什么危害| 连长是什么级别| 结节有什么症状| 疼痛科属于什么科| 肺炎衣原体和支原体有什么区别| 93年属什么的| 茶叶属于什么类目| 强直性脊柱炎是什么| 预防脑梗用什么药效果好| 猫眼石是什么材质| 什么是ntr| 漉是什么意思| 能够握紧的就别放了是什么歌| 桑拓木命是什么意思| 心脏病吃什么食物好| 6月出生是什么星座| 为什么困但是睡不着| 谭震林是什么军衔| 蜈蚣代表什么生肖| 流产的血是什么颜色| 低压高什么症状| 正印是什么意思| 黄芪起什么作用| 医院属于什么行业| 暂告一段落是什么意思| 追溯码是什么意思| 上海龙华医院擅长什么| 牙齿黑是什么原因| 三唑磷主要打什么虫| 如如不动是什么意思| 感冒发烧吃什么水果好| 冥是什么意思| 6.1号是什么星座| 外阴过敏用什么药| 肚脐周围是什么肠| 变色龙指什么样的人| 非那根又叫什么| 脸书是什么| 办护照需要带什么| 孕妇羊水多是什么原因造成的| 宝宝吃什么鱼比较好| 7月9日是什么星座| 天蝎座和什么星座配| 什么拉车连蹦带跳歇后语| 什么原因导致打嗝| nba常规赛什么时候开始| oid是什么意思| 辱骂是什么意思| 浮肿吃什么药| 国手什么意思| 虾吃什么| 疑似是什么意思| 哥字五行属什么| 什么是瘦马| 平起平坐是什么动物| 防晒霜和防晒乳有什么区别| 军五行属什么| 给男人补身体煲什么汤| 什么叫低钾血症| 虫草适合什么人吃| 老虎属于什么科动物| 什么水果含叶酸最多| 肌酐高是什么原因造成的| 瑞字属于五行属什么| 优雅是什么意思| meta分析是什么| 澄粉是什么粉| 唐氏综合症是什么病| 牛蛙吃什么| 隐形眼镜半年抛是什么意思| 你代表什么意思| 脱发看什么科| 血压高有什么危害| 什么的香蕉| 早上起来手麻是什么原因| 粘纤是什么材质| 失落感是什么意思| 什么的跳舞| 螺旋杆菌是什么病| 颈椎病吃什么药| 3.3是什么星座| 十年粤语版叫什么名字| 普瑞巴林胶囊治什么病| 一个大一个小念什么| 周中是什么意思| 拆骨肉是什么肉| 什么油锯好| 牛蛙不能和什么一起吃| 花絮是什么意思| 阴部毛变白是什么原因| 一什么教室| 什么是客单价| 后背长痘痘是什么原因引起的| 心梗是什么原因引起的| 2037年是什么年| 学业有成是什么意思| 流产吃什么药| 粘膜慢性炎是什么病| 低钾血症吃什么食补| 处女和什么座最配对| 对方忙线中什么意思| 元宵节吃什么| 女猴配什么属相最好| 尿肌酐高是什么原因引起的| 尿分叉吃什么药能治好| 怀孕查甲功是什么意思| 心跳过快用什么药| 水蛭是什么东西| 不加大念什么| 梦见生姜是什么意思| 金箔是什么| 抓龙筋什么意思| 胃黏膜病变是什么意思| 天秤女喜欢什么样的男生| 常务理事是什么职位| 小孩经常流鼻血是什么原因| 因特网是什么意思| 怕冷又怕热是什么原因| 尼姑庵是什么意思| 胃炎吃什么中药效果好| 心火旺失眠吃什么药| 柱状上皮外移什么意思| 智齿为什么会横着长| 生殖疱疹吃什么药不复发| 为什么学习不好| 虫至念什么| 偏头疼挂什么科室| 小孩喜欢吃什么菜| 龙象征着什么| 山梨酸钾是什么| 舌头中间裂纹是什么病| 四个火字念什么| 三月初一是什么星座| yy什么意思| 崇敬是什么意思| 总是口腔溃疡是什么原因| 拔智齿后吃什么消炎药| 庞统为什么要献连环计| 孕妇应该多吃什么水果| 植物的根有什么作用| 鸟加衣念什么| 局是什么生肖| 肚子疼是为什么| 吃什么补维生素D效果最好| 智齿为什么叫智齿| 羟氯喹是什么药| 免疫球蛋白g是什么意思| 嘴角开裂是什么原因| 血压高降不下来是什么原因| 南瓜子吃多了有什么副作用| 三个土叫什么| 8月23是什么星座的| 吃什么能立马通大便| 橘黄色是什么颜色| 表白是什么意思| 黄历破屋是什么意思| 金色葡萄球菌最怕什么| 代谢慢吃什么效果最快| 高考考生号是什么| 细菌感染吃什么抗生素| 吃完油炸的东西后吃什么化解| 人乳头瘤病毒56型阳性是什么意思| 大脑供血不足头晕吃什么药最好| 淋巴细胞偏高是什么意思| 抗hbc阳性是什么意思| 结晶体是什么意思| 拉肚子吃什么药最有效| 白蛋白偏低是什么原因| ca199检查是什么意思| 沙悟净是什么生肖| 灵芝有什么功效与作用| 晚餐吃什么| 睡眠不好是什么原因引起的| 米为什么会生虫| 为什么明星整牙那么快| 满身红点是什么病| 庄子是什么学派| 尿比重高是什么意思| 脾肾阳虚吃什么药| 喝什么茶清肺效果最好| 五指毛桃长什么样| 直男是什么意思| 微信什么时候开始的| 子不问卜自惹祸殃什么意思| 不加大念什么| 更的部首是什么| 味精是什么提炼出来的| 桃子什么时候成熟| 心脏难受是什么原因| 随便你是什么意思| 梅菜扣肉的梅菜是什么菜| 吃什么补铁快| 钺读什么| 避孕套长什么样| 梦到抓了好多鱼是什么意思| 精神焦虑症有什么表现有哪些| 冷暖自知上一句是什么| 神经内科主要看什么病| 推是什么意思| 煲什么汤去湿气最好| 睡觉翻白眼是什么原因| 属龙的守护神是什么菩萨| 失眠吃什么中药| 领衔是什么意思| 恭候是什么意思| 西安什么山| 生气发抖是什么原因| 蜻蜓吃什么| 干细胞能治什么病| 梦见吃西瓜是什么征兆| 气管小憩室是什么意思| 大什么什么什么成语| 正印代表什么意思| 金鱼藻是什么植物| epc什么意思| 插入阴道是什么感觉| 路人甲什么意思| 唇周发黑是什么原因| 善男信女什么意思| 大象的耳朵有什么作用| 荷尔蒙是什么东西| spi是什么| 尿胆红素2十是什么意思| 查验是什么意思| 菱形脸适合什么刘海| 异常是什么意思| 考试吃什么早餐| 头什么脚什么| 云南有什么少数民族| 排卵期有什么明显症状| 小孩坐飞机需要什么证件| 百度

履职内蒙古团 习近平面授发展良策

(Redirected from Non-linear)
百度 兴教育4月15日,李克强总理在北京召开高等教育改革创新座谈会,总理在座谈会上指出:要加快推进高等教育领域放、管、服改革。

In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input.[1][2] Nonlinear problems are of interest to engineers, biologists,[3][4][5] physicists,[6][7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature.[8] Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

Typically, the behavior of a nonlinear system is described in mathematics by a nonlinear system of equations, which is a set of simultaneous equations in which the unknowns (or the unknown functions in the case of differential equations) appear as variables of a polynomial of degree higher than one or in the argument of a function which is not a polynomial of degree one. In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of the unknown variables or functions that appear in them. Systems can be defined as nonlinear, regardless of whether known linear functions appear in the equations. In particular, a differential equation is linear if it is linear in terms of the unknown function and its derivatives, even if nonlinear in terms of the other variables appearing in it.

As nonlinear dynamical equations are difficult to solve, nonlinear systems are commonly approximated by linear equations (linearization). This works well up to some accuracy and some range for the input values, but some interesting phenomena such as solitons, chaos,[9] and singularities are hidden by linearization. It follows that some aspects of the dynamic behavior of a nonlinear system can appear to be counterintuitive, unpredictable or even chaotic. Although such chaotic behavior may resemble random behavior, it is in fact not random. For example, some aspects of the weather are seen to be chaotic, where simple changes in one part of the system produce complex effects throughout. This nonlinearity is one of the reasons why accurate long-term forecasts are impossible with current technology.

Some authors use the term nonlinear science for the study of nonlinear systems. This term is disputed by others:

Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals.

Definition

edit

In mathematics, a linear map (or linear function)   is one which satisfies both of the following properties:

  • Additivity or superposition principle:  
  • Homogeneity:  

Additivity implies homogeneity for any rational α, and, for continuous functions, for any real α. For a complex α, homogeneity does not follow from additivity. For example, an antilinear map is additive but not homogeneous. The conditions of additivity and homogeneity are often combined in the superposition principle

 

An equation written as

 

is called linear if   is a linear map (as defined above) and nonlinear otherwise. The equation is called homogeneous if   and   is a homogeneous function.

The definition   is very general in that   can be any sensible mathematical object (number, vector, function, etc.), and the function   can literally be any mapping, including integration or differentiation with associated constraints (such as boundary values). If   contains differentiation with respect to  , the result will be a differential equation.

Nonlinear systems of equations

edit

A nonlinear system of equations consists of a set of equations in several variables such that at least one of them is not a linear equation.

For a single equation of the form   many methods have been designed; see Root-finding algorithm. In the case where f is a polynomial, one has a polynomial equation such as   The general root-finding algorithms apply to polynomial roots, but, generally they do not find all the roots, and when they fail to find a root, this does not imply that there is no roots. Specific methods for polynomials allow finding all roots or the real roots; see real-root isolation.

Solving systems of polynomial equations, that is finding the common zeros of a set of several polynomials in several variables is a difficult problem for which elaborate algorithms have been designed, such as Gr?bner base algorithms.[11]

For the general case of system of equations formed by equating to zero several differentiable functions, the main method is Newton's method and its variants. Generally they may provide a solution, but do not provide any information on the number of solutions.

Nonlinear recurrence relations

edit

A nonlinear recurrence relation defines successive terms of a sequence as a nonlinear function of preceding terms. Examples of nonlinear recurrence relations are the logistic map and the relations that define the various Hofstadter sequences. Nonlinear discrete models that represent a wide class of nonlinear recurrence relationships include the NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model and the related nonlinear system identification and analysis procedures.[12] These approaches can be used to study a wide class of complex nonlinear behaviors in the time, frequency, and spatio-temporal domains.

Nonlinear differential equations

edit

A system of differential equations is said to be nonlinear if it is not a system of linear equations. Problems involving nonlinear differential equations are extremely diverse, and methods of solution or analysis are problem dependent. Examples of nonlinear differential equations are the Navier–Stokes equations in fluid dynamics and the Lotka–Volterra equations in biology.

One of the greatest difficulties of nonlinear problems is that it is not generally possible to combine known solutions into new solutions. In linear problems, for example, a family of linearly independent solutions can be used to construct general solutions through the superposition principle. A good example of this is one-dimensional heat transport with Dirichlet boundary conditions, the solution of which can be written as a time-dependent linear combination of sinusoids of differing frequencies; this makes solutions very flexible. It is often possible to find several very specific solutions to nonlinear equations, however the lack of a superposition principle prevents the construction of new solutions.

Ordinary differential equations

edit

First order ordinary differential equations are often exactly solvable by separation of variables, especially for autonomous equations. For example, the nonlinear equation

 

has   as a general solution (and also the special solution   corresponding to the limit of the general solution when C tends to infinity). The equation is nonlinear because it may be written as

 

and the left-hand side of the equation is not a linear function of   and its derivatives. Note that if the   term were replaced with  , the problem would be linear (the exponential decay problem).

Second and higher order ordinary differential equations (more generally, systems of nonlinear equations) rarely yield closed-form solutions, though implicit solutions and solutions involving nonelementary integrals are encountered.

Common methods for the qualitative analysis of nonlinear ordinary differential equations include:

Partial differential equations

edit

The most common basic approach to studying nonlinear partial differential equations is to change the variables (or otherwise transform the problem) so that the resulting problem is simpler (possibly linear). Sometimes, the equation may be transformed into one or more ordinary differential equations, as seen in separation of variables, which is always useful whether or not the resulting ordinary differential equation(s) is solvable.

Another common (though less mathematical) tactic, often exploited in fluid and heat mechanics, is to use scale analysis to simplify a general, natural equation in a certain specific boundary value problem. For example, the (very) nonlinear Navier-Stokes equations can be simplified into one linear partial differential equation in the case of transient, laminar, one dimensional flow in a circular pipe; the scale analysis provides conditions under which the flow is laminar and one dimensional and also yields the simplified equation.

Other methods include examining the characteristics and using the methods outlined above for ordinary differential equations.

Pendula

edit
 
Illustration of a pendulum
 
Linearizations of a pendulum

A classic, extensively studied nonlinear problem is the dynamics of a frictionless pendulum under the influence of gravity. Using Lagrangian mechanics, it may be shown[14] that the motion of a pendulum can be described by the dimensionless nonlinear equation

 

where gravity points "downwards" and   is the angle the pendulum forms with its rest position, as shown in the figure at right. One approach to "solving" this equation is to use   as an integrating factor, which would eventually yield

 

which is an implicit solution involving an elliptic integral. This "solution" generally does not have many uses because most of the nature of the solution is hidden in the nonelementary integral (nonelementary unless  ).

Another way to approach the problem is to linearize any nonlinearity (the sine function term in this case) at the various points of interest through Taylor expansions. For example, the linearization at  , called the small angle approximation, is

 

since   for  . This is a simple harmonic oscillator corresponding to oscillations of the pendulum near the bottom of its path. Another linearization would be at  , corresponding to the pendulum being straight up:

 

since   for  . The solution to this problem involves hyperbolic sinusoids, and note that unlike the small angle approximation, this approximation is unstable, meaning that   will usually grow without limit, though bounded solutions are possible. This corresponds to the difficulty of balancing a pendulum upright, it is literally an unstable state.

One more interesting linearization is possible around  , around which  :

 

This corresponds to a free fall problem. A very useful qualitative picture of the pendulum's dynamics may be obtained by piecing together such linearizations, as seen in the figure at right. Other techniques may be used to find (exact) phase portraits and approximate periods.

Types of nonlinear dynamic behaviors

edit
  • Amplitude death – any oscillations present in the system cease due to some kind of interaction with other system or feedback by the same system
  • Chaos – values of a system cannot be predicted indefinitely far into the future, and fluctuations are aperiodic
  • Multistability – the presence of two or more stable states
  • Solitons – self-reinforcing solitary waves
  • Limit cycles – asymptotic periodic orbits to which destabilized fixed points are attracted.
  • Self-oscillations – feedback oscillations taking place in open dissipative physical systems.

Examples of nonlinear equations

edit

See also

edit

References

edit
  1. ^ "Explained: Linear and nonlinear systems". MIT News. Retrieved 2025-08-06.
  2. ^ "Nonlinear systems, Applied Mathematics - University of Birmingham". www.birmingham.ac.uk. Retrieved 2025-08-06.
  3. ^ "Nonlinear Biology", The Nonlinear Universe, The Frontiers Collection, Springer Berlin Heidelberg, 2007, pp. 181–276, doi:10.1007/978-3-540-34153-6_7, ISBN 9783540341529
  4. ^ Korenberg, Michael J.; Hunter, Ian W. (March 1996). "The identification of nonlinear biological systems: Volterra kernel approaches". Annals of Biomedical Engineering. 24 (2): 250–268. doi:10.1007/bf02667354. ISSN 0090-6964. PMID 8678357. S2CID 20643206.
  5. ^ Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-Fran?ois; Vincent Croquette; Bensimon, David (2008). "Some nonlinear challenges in biology". Nonlinearity. 21 (8): T131. Bibcode:2008Nonli..21..131M. doi:10.1088/0951-7715/21/8/T03. ISSN 0951-7715. S2CID 119808230.
  6. ^ Gintautas, V. (2008). "Resonant forcing of nonlinear systems of differential equations". Chaos. 18 (3): 033118. arXiv:0803.2252. Bibcode:2008Chaos..18c3118G. doi:10.1063/1.2964200. PMID 19045456. S2CID 18345817.
  7. ^ Stephenson, C.; et., al. (2017). "Topological properties of a self-assembled electrical network via ab initio calculation". Sci. Rep. 7: 41621. Bibcode:2017NatSR...741621S. doi:10.1038/srep41621. PMC 5290745. PMID 28155863.
  8. ^ de Canete, Javier, Cipriano Galindo, and Inmaculada Garcia-Moral (2011). System Engineering and Automation: An Interactive Educational Approach. Berlin: Springer. p. 46. ISBN 978-3642202292. Retrieved 20 January 2018.{{cite book}}: CS1 maint: multiple names: authors list (link)
  9. ^ Nonlinear Dynamics I: Chaos Archived 2025-08-06 at the Wayback Machine at MIT's OpenCourseWare
  10. ^ Campbell, David K. (25 November 2004). "Nonlinear physics: Fresh breather". Nature. 432 (7016): 455–456. Bibcode:2004Natur.432..455C. doi:10.1038/432455a. ISSN 0028-0836. PMID 15565139. S2CID 4403332.
  11. ^ Lazard, D. (2009). "Thirty years of Polynomial System Solving, and now?". Journal of Symbolic Computation. 44 (3): 222–231. doi:10.1016/j.jsc.2008.03.004.
  12. ^ Billings S.A. "Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains". Wiley, 2013
  13. ^ Vardia T. Haimo (1985). "Finite Time Differential Equations". 1985 24th IEEE Conference on Decision and Control. pp. 1729–1733. doi:10.1109/CDC.1985.268832. S2CID 45426376.
  14. ^ David Tong: Lectures on Classical Dynamics

Further reading

edit
edit
幽门螺旋杆菌感染是什么意思 化疗是什么样的过程 中暑吃什么药好 脚酸是什么原因 雾化器是干什么用的
低血压高吃什么药好 尿常规白细胞高是什么原因 花生不能和什么一起吃 咏字五行属什么 汉语拼音什么时候发明的
然五行属性是什么 怀孕吃什么必定流产 红烧肉配什么菜好吃 闹乌龙是什么意思 自信过头叫什么
斑秃是什么原因 遗留是什么意思 尿肌酐高是什么原因引起的 早上醒来手麻是什么原因 第一次见家长送什么礼物好
维u是什么药hcv7jop4ns8r.cn 肩膀疼是什么原因引起的hcv9jop5ns9r.cn 冰岛说什么语言chuanglingweilai.com alt是什么hcv9jop0ns8r.cn 梦到怀孕生孩子是什么意思hcv9jop0ns9r.cn
辣眼睛是什么意思hcv9jop0ns1r.cn 血常规是什么意思hcv7jop9ns2r.cn 热毛巾敷眼睛有什么好处hcv9jop8ns1r.cn 屈打成招是什么意思hcv7jop9ns0r.cn 重丧是什么意思hcv8jop3ns6r.cn
酷的意思是什么hcv9jop3ns0r.cn 枸杞泡水喝有什么作用和功效hcv9jop6ns3r.cn 独角仙吃什么食物hcv8jop9ns8r.cn 滴虫性阴炎有什么症状表现hcv8jop0ns3r.cn 否是什么意思helloaicloud.com
阿司匹林什么时间吃最好hcv9jop6ns6r.cn 海洋里面有什么动物hcv8jop1ns3r.cn 恍惚什么意思weuuu.com 为什么睡觉老是流口水hcv9jop4ns9r.cn 雪球是什么hcv9jop1ns9r.cn
百度